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DSM parameters

General definition of DSMs

A distributional semantic model (DSM) is a scaled and/or
transformed co-occurrence matrix M, such that each row x
represents the distribution of a target term across contexts.

get see use hear eat kill
knife 0.027 -0.024 0.206 -0.022 -0.044 -0.042
cat 0.031 0.143 -0.243 -0.015 -0.009 0.131
dog -0.026 0.021 -0.212 0.064 0.013 0.014
boat -0.022 0.009 -0.044 -0.040 -0.074 -0.042
cup -0.014 -0.173 -0.249 -0.099 -0.119 -0.042
pig -0.069 0.094 -0.158 0.000 0.094 0.265

banana 0.047 -0.139 -0.104 -0.022 0.267 -0.042

Term = word, lemma, phrase, morpheme, word pair, . . .
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DSM parameters

General definition of DSMs

Mathematical notation:
I k × n co-occurrence matrix M ∈ Rk×n (example: 7× 6)

I k rows = target terms
I n columns = features or dimensions

M =


m11 m12 · · · m1n
m21 m22 · · · m2n
...

...
...

mk1 mk2 · · · mkn


I distribution vector mi = i-th row of M, e.g. m3 = mdog ∈ Rn

I components mi = (mi1,mi2, . . . ,min) = features of i-th term:

m3 = (−0.026, 0.021,−0.212, 0.064, 0.013, 0.014)
= (m31,m32,m33,m34,m35,m36)
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DSM parameters A taxonomy of DSM parameters
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DSM parameters A taxonomy of DSM parameters

Overview of DSM parameters
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DSM parameters A taxonomy of DSM parameters

Term-context matrix

Term-context matrix records frequency of term in each individual
context (e.g. sentence, document, Web page, encyclopaedia article)

F =



· · · f1 · · ·
· · · f2 · · ·

...

...
· · · fk · · ·


Fe
lid
ae

Pe
t

Fe
ra
l

Bl
oa
t

Ph
ilo
so
ph
y

Ka
nt

Ba
ck

pa
in

cat 10 10 7 – – – –
dog – 10 4 11 – – –

animal 2 15 10 2 – – –
time 1 – – – 2 1 –

reason – 1 – – 1 4 1
cause – – – 2 1 2 6
effect – – – 1 – 1 –

> TC <- DSM_TermContext
> head(TC, Inf) # extract full co-oc matrix from DSM object
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DSM parameters A taxonomy of DSM parameters

Term-term matrix

Term-term matrix records co-occurrence frequencies with feature
terms for each target term

M =



· · · m1 · · ·
· · · m2 · · ·

...

...
· · · mk · · ·


br
ee
d

ta
il

fee
d

kil
l

im
po
rta

nt
ex
pla

in
lik
ely

cat 83 17 7 37 – 1 –
dog 561 13 30 60 1 2 4

animal 42 10 109 134 13 5 5
time 19 9 29 117 81 34 109

reason 1 – 2 14 68 140 47
cause – 1 – 4 55 34 55
effect – – 1 6 60 35 17

> TT <- DSM_TermTerm
> head(TT, Inf)
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DSM parameters A taxonomy of DSM parameters

Term-term matrix

Some footnotes:
I Often target terms 6= feature terms

I e.g. nouns described by co-occurrences with verbs as features
I identical sets of target & feature terms Ü symmetric matrix

I Different types of co-occurrence (Evert 2008)
I surface context (word or character window)
I textual context (non-overlapping segments)
I syntactic context (dependency relation)

I Can be seen as smoothing of term-context matrix
I average over similar contexts (with same context terms)
I data sparseness reduced, except for small windows
I we will take a closer look at the relation between term-context

and term-term models in part 5 of this tutorial
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DSM parameters A taxonomy of DSM parameters

Definition of target and feature terms
I Choice of linguistic unit

I words
I bigrams, trigrams, . . .
I multiword units, named entities, phrases, . . .
I morphemes
I word pairs (+ analogy tasks)

I Linguistic annotation
I word forms (minimally requires tokenisation)
I often lemmatisation or stemming to reduce data sparseness:

go, goes, went, gone, going Ü go
I POS disambiguation (light/N vs. light/A vs. light/V)
I word sense disambiguation (bankriver vs. bankfinance)
I abstraction: POS tags (or bigrams) as feature terms

I Trade-off between deeper linguistic analysis and
I need for language-specific resources
I possible errors introduced at each stage of the analysis
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DSM parameters A taxonomy of DSM parameters

Effects of linguistic annotation

Nearest neighbours of walk (BNC)

word forms
I stroll
I walking
I walked
I go
I path
I drive
I ride
I wander
I sprinted
I sauntered

lemmatised + POS

I hurry
I stroll
I stride
I trudge
I amble
I wander
I walk (noun)
I walking
I retrace
I scuttle
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DSM parameters A taxonomy of DSM parameters

Effects of linguistic annotation

Nearest neighbours of arrivare (Repubblica)

word forms
I giungere
I raggiungere
I arrivi
I raggiungimento
I raggiunto
I trovare
I raggiunge
I arrivasse
I arriverà
I concludere

lemmatised + POS

I giungere
I aspettare
I attendere
I arrivo (noun)
I ricevere
I accontentare
I approdare
I pervenire
I venire
I piombare
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DSM parameters A taxonomy of DSM parameters

Selection of target and feature terms

I Full-vocabulary models are often unmanageable
I 762,424 distinct word forms in BNC, 605,910 lemmata
I large Web corpora have > 10 million distinct word forms
I low-frequency targets (and features) do not provide reliable

distributional information (too much “noise”)

I Frequency-based selection
I minimum corpus frequency: f ≥ Fmin
I or accept nw most frequent terms
I sometimes also upper threshold: Fmin ≤ f ≤ Fmax

I Relevance-based selection
I criterion from IR: document frequency df
I terms with high df are too general Ü uninformative
I terms with very low df may be too sparse to be useful

I Other criteria
I POS-based filter: no function words, only verbs, . . .
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DSM parameters A taxonomy of DSM parameters

Surface context

Context term occurs within a span of k words around target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners. [L3/R3 span, k = 6]

Parameters:
I span size (in words or characters)
I symmetric vs. one-sided span
I uniform or “triangular” (distance-based) weighting
I spans clamped to sentences or other textual units?
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DSM parameters A taxonomy of DSM parameters

Effect of span size

Nearest neighbours of dog (BNC)

2-word span

I cat
I horse
I fox
I pet
I rabbit
I pig
I animal
I mongrel
I sheep
I pigeon

30-word span

I kennel
I puppy
I pet
I bitch
I terrier
I rottweiler
I canine
I cat
I to bark
I Alsatian
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DSM parameters A taxonomy of DSM parameters

Textual context

Context term is in the same linguistic unit as target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
I type of linguistic unit

I sentence
I paragraph
I turn in a conversation
I Web page
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DSM parameters A taxonomy of DSM parameters

Syntactic context

Context term is linked to target by a syntactic dependency
(e.g. subject, modifier, . . . ).

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
I types of syntactic dependency (Padó and Lapata 2007)
I direct vs. indirect dependency paths

I direct dependencies
I direct + indirect dependencies

I homogeneous data (e.g. only verb-object) vs.
heterogeneous data (e.g. all children and parents of the verb)

I maximal length of dependency path
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DSM parameters A taxonomy of DSM parameters

“Knowledge pattern” context

Context term is linked to target by a lexico-syntactic pattern
(text mining, cf. Hearst 1992, Pantel & Pennacchiotti 2008, etc.).

In Provence, Van Gogh painted with bright colors such as red and
yellow. These colors produce incredible effects on anybody looking
at his paintings.

Parameters:
I inventory of lexical patterns

I lots of research to identify semantically interesting patterns
(cf. Almuhareb & Poesio 2004, Veale & Hao 2008, etc.)

I fixed vs. flexible patterns
I patterns are mined from large corpora and automatically

generalised (optional elements, POS tags or semantic classes)
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DSM parameters A taxonomy of DSM parameters

Structured vs. unstructured context

I In unstructered models, context specification acts as a filter
I determines whether context token counts as co-occurrence
I e.g. muste be linked by any syntactic dependency relation

I In structured models, feature terms are subtyped
I depending on their position in the context
I e.g. left vs. right context, type of syntactic relation, etc.
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DSM parameters A taxonomy of DSM parameters

Structured vs. unstructured surface context

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

unstructured bite
dog 4
man 3

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

structured bite-l bite-r
dog 3 1
man 1 2
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DSM parameters A taxonomy of DSM parameters

Structured vs. unstructured dependency context

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

unstructured bite
dog 4
man 2

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

structured bite-subj bite-obj
dog 3 1
man 0 2
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DSM parameters A taxonomy of DSM parameters
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DSM parameters A taxonomy of DSM parameters

Comparison

I Unstructured context
I data less sparse (e.g. man kills and kills man both map to the

kill dimension of the vector xman)

I Structured context
I more sensitive to semantic distinctions

(kill-subj and kill-obj are rather different things!)
I dependency relations provide a form of syntactic “typing” of

the DSM dimensions (the “subject” dimensions, the
“recipient” dimensions, etc.)

I important to account for word-order and compositionality
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DSM parameters A taxonomy of DSM parameters

Context tokens vs. context types

I Features are usually context tokens, i.e. individual instances
I document, Wikipedia article, Web page, . . .
I paragraph, sentence, tweet, . . .
I “co-occurrence” count = frequency of term in context token

I Can also be generalised to context types, e.g.
I type = cluster of near-duplicate documents
I type = syntactic structure of sentence (ignoring content)
I type = tweets from same author
I frequency counts from all instances of type are aggregated

I Context types may be anchored at individual tokens
I n-gram of words (or POS tags) around target
I subcategorisation pattern of target verb

å overlaps with (generalisation of) syntactic co-occurrence
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DSM parameters A taxonomy of DSM parameters

Marginal and expected frequencies

I Matrix of observed co-occurrence frequencies not sufficient

target feature O

R C E

dog small 855

33,338 490,580 134.34

dog domesticated 29

33,338 918 0.25

I Notation
I O = observed co-occurrence frequency

I R = overall frequency of target term = row marginal frequency
I C = overall frequency of feature = column marginal frequency
I N = sample size ≈ size of corpus

I Expected co-occurrence frequency

E = R · C
N ←→ O
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DSM parameters A taxonomy of DSM parameters

Obtaining marginal frequencies

I Term-document matrix
I R = frequency of target term in corpus
I C = size of document (# tokens)
I N = corpus size

I Syntactic co-occurrence
I # of dependency instances in which target/feature participates
I N = total number of dependency instances
I can be computed from full co-occurrence matrix M

I Textual co-occurrence
I R,C ,O are “document” frequencies, i.e. number of context

units in which target, feature or combination occurs
I N = total # of context units
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I can be computed from full co-occurrence matrix M

I Textual co-occurrence
I R,C ,O are “document” frequencies, i.e. number of context

units in which target, feature or combination occurs
I N = total # of context units
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DSM parameters A taxonomy of DSM parameters

Obtaining marginal frequencies

I Surface co-occurrence
I it is quite tricky to obtain fully consistent counts (Evert 2008)
I at least correct E for span size k (= number of tokens in span)

E = k · R · C
N

with R,C = individual corpus frequencies and N = corpus size
I can also be implemented by pre-multiplying R ′ = k · R

I NB: shifted PPMI (Levy and Goldberg 2014) corresponds to a
post-hoc application of the span size adjustment

I performs worse than PPMI, but paper suggests they already
may have over-adjusted by factor k2 through the marginals
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DSM parameters A taxonomy of DSM parameters

Marginal frequencies in wordspace

DSM objects in wordspace include marginal frequencies as well as
counts of nonzero cells for rows and columns.

> TT$rows
term f nnzero

1 cat 22007 5
2 dog 50807 7
3 animal 77053 7
4 time 1156693 7
5 reason 95047 6
6 cause 54739 5
7 effect 133102 6
> TT$cols
...
> TT$globals$N
[1] 199902178
> TT$M # the full co-occurrence matrix
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DSM parameters A taxonomy of DSM parameters

Geometric vs. probabilistic interpretation

I Geometric interpretation
I row vectors as points or arrows in n-dimensional space
I very intuitive, good for visualisation
I use techniques from geometry and matrix algebra

I Probabilistic interpretation
I co-occurrence matrix as observed sample statistic that is

“explained” by a generative probabilistic model
I e.g. probabilistic LSA (Hoffmann 1999), Latent Semantic

Clustering (Rooth et al. 1999), Latent Dirichlet Allocation
(Blei et al. 2003), etc.

I explicitly accounts for random variation of frequency counts
I recent work: neural word embeddings

+ focus on geometric interpretation in this tutorial
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DSM parameters A taxonomy of DSM parameters

Overview of DSM parameters

pre-processed corpus with linguistic annotation

define target & feature termsdefine target terms

define target & feature termsdefine target terms

type & size of co-occurrence

type & size of co-occurrence

context tokens or types

context tokens or types

M

M

feature scaling

feature scaling

similarity/distance measure + normalization

similarity/distance measure + normalization

dimensionality reduction

dimensionality reduction

term-term matrixterm-context matrix

probabilistic analysisgeometric analysis
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DSM parameters A taxonomy of DSM parameters

Feature scaling

Feature scaling is used to “discount” less important features:
I Logarithmic scaling: O′ = log(O + 1)

(cf. Weber-Fechner law for human perception)

I Relevance weighting, e.g. tf.idf (information retrieval)

tf .idf = tf · log(D/df )

I tf = co-occurrence frequency O
I df = document frequency of feature (or nonzero count)
I D = total number of documents (or row count of M)

I Statistical association measures (Evert 2004, 2008) take
frequency of target term and feature into account

I often based on comparison of observed and expected
co-occurrence frequency

I measures differ in how they balance O and E
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DSM parameters A taxonomy of DSM parameters

Simple association measures

I pointwise Mutual Information (MI)

MI = log2
O
E

I local MI
local-MI = O ·MI = O · log2

O
E

I t-score
t = O − E√

O

target feature O E

MI local-MI t-score

dog small 855 134.34

2.67 2282.88 24.64

dog domesticated 29 0.25

6.85 198.76 5.34

dog sgjkj 1 0.00027

11.85 11.85 1.00
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DSM parameters A taxonomy of DSM parameters

Other association measures

I simple log-likelihood (≈ local-MI)

G2 = ± 2 ·
(

O · log2
O
E − (O − E )

)
with positive sign for O > E and negative sign for O < E

I Dice coefficient
Dice = 2O

R + C
I Many other simple association measures (AMs) available
I Further AMs computed from full contingency tables, see

I Evert (2008)
I http://www.collocations.de/
I http://sigil.r-forge.r-project.org/
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DSM parameters A taxonomy of DSM parameters

Applying association scores in wordspace

> options(digits=3) # print fractional values with limited precision
> dsm.score(TT, score="MI", sparse=FALSE, matrix=TRUE)

breed tail feed kill important explain likely
cat 6.21 4.568 3.129 2.801 -Inf 0.0182 -Inf
dog 7.78 3.081 3.922 2.323 -3.774 -1.1888 -0.4958
animal 3.50 2.132 4.747 2.832 -0.674 -0.4677 -0.0966
time -1.65 -2.236 -0.729 -1.097 -1.728 -1.2382 0.6392
reason -2.30 -Inf -1.982 -0.388 1.472 4.0368 2.8860
cause -Inf -0.834 -Inf -2.177 1.900 2.8329 4.0691
effect -Inf -2.116 -2.468 -2.459 0.791 1.6312 0.9221

+ sparseness of the matrix has been lost!
+ cells with score x = −∞ are inconvenient
+ distribution of scores may be even more skewed than

co-occurrence frequencies (esp. for local-MI)
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DSM parameters A taxonomy of DSM parameters

Sparse association measures

I Sparse association scores are cut off at zero, i.e.

f (x) =
{

x x > 0
0 x ≤ 0

I Also known as “positive” scores
I PPMI = positive pointwise MI (e.g. Bullinaria and Levy 2007)
I wordspace computes sparse AMs by default Ü "MI" = PPMI

I Preserves sparseness if x ≤ 0 for all empty cells (O = 0)
I sparseness may even increase: cells with x < 0 become empty

I Usually combined with signed association measure satisfying
I x > 0 for O > E
I x < 0 for O < E
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DSM parameters A taxonomy of DSM parameters

Score transformations
An additional scale transformation can be applied in order to
de-skew association scores:

I signed logarithmic transformation

f (x) = ± log(|x |+ 1)
I sigmoid transformation as soft binarization

f (x) = tanh x
I sparse AM as cutoff transformation

−2 0 2 4 6

−
1

0
1

2

x

f(
x)

sparse
sigmoid
log
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DSM parameters A taxonomy of DSM parameters

Association scores & transformations in wordspace

> dsm.score(TT, score="MI", matrix=TRUE) # PPMI
breed tail feed kill important explain likely

cat 6.21 4.57 3.13 2.80 0.000 0.0182 0.000
dog 7.78 3.08 3.92 2.32 0.000 0.0000 0.000
animal 3.50 2.13 4.75 2.83 0.000 0.0000 0.000
time 0.00 0.00 0.00 0.00 0.000 0.0000 0.639
reason 0.00 0.00 0.00 0.00 1.472 4.0368 2.886
cause 0.00 0.00 0.00 0.00 1.900 2.8329 4.069
effect 0.00 0.00 0.00 0.00 0.791 1.6312 0.922
> dsm.score(TT, score="simple-ll", matrix=TRUE)
> dsm.score(TT, score="simple-ll", transf="log", matrix=T)
# logarithmic co-occurrence frequency
> dsm.score(TT, score="freq", transform="log", matrix=T)

# now try other parameter combinations
> ?dsm.score # read help page for available parameter settings
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DSM parameters A taxonomy of DSM parameters

Scaling of column vectors

I In statistical analysis and machine learning, features are
usually centred and scaled so that

mean µ = 0
variance σ2 = 1

I In DSM research, this step is less common for columns of M
I centring is a prerequisite for certain dimensionality reduction

and data analysis techniques (esp. PCA)
I but co-occurrence matrix no longer sparse!
I scaling may give too much weight to rare features

I M cannot be row-normalised and column-scaled at the same
time (result depends on ordering of the two steps)
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DSM parameters A taxonomy of DSM parameters

Overview of DSM parameters

pre-processed corpus with linguistic annotation

define target & feature termsdefine target terms

define target & feature termsdefine target terms

type & size of co-occurrence

type & size of co-occurrence

context tokens or types

context tokens or types

M

M

feature scaling

feature scaling

similarity/distance measure + normalization

similarity/distance measure + normalization

dimensionality reduction

dimensionality reduction

term-term matrixterm-context matrix

probabilistic analysisgeometric analysis
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DSM parameters A taxonomy of DSM parameters

Geometric distance = metric

I Distance between vectors
u, v ∈ Rn Ü (dis)similarity

I u = (u1, . . . , un)
I v = (v1, . . . , vn)

I Euclidean distance d2 (u, v)
I “City block” Manhattan

distance d1 (u, v)
I Both are special cases of the
Minkowski p-distance dp (u, v)
(for p ∈ [1,∞])

x1

v

x2

1 2 3 4 5

1

2

3

4

5

6

6 u

d2 (!u,!v) = 3.6

d1 (!u,!v) = 5

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial – Part 2 wordspace.collocations.de 43 / 74



DSM parameters A taxonomy of DSM parameters

Geometric distance = metric

I Distance between vectors
u, v ∈ Rn Ü (dis)similarity

I u = (u1, . . . , un)
I v = (v1, . . . , vn)

I Euclidean distance d2 (u, v)

I “City block” Manhattan
distance d1 (u, v)

I Both are special cases of the
Minkowski p-distance dp (u, v)
(for p ∈ [1,∞])

x1

v

x2

1 2 3 4 5

1

2

3

4

5

6

6 u

d2 (!u,!v) = 3.6

d1 (!u,!v) = 5

d2 (u, v) :=
√

(u1 − v1)2 + · · ·+ (un − vn)2
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DSM parameters A taxonomy of DSM parameters

Geometric distance = metric

I Distance between vectors
u, v ∈ Rn Ü (dis)similarity

I u = (u1, . . . , un)
I v = (v1, . . . , vn)

I Euclidean distance d2 (u, v)
I “City block” Manhattan

distance d1 (u, v)
I Extension of p-distance dp (u, v)

(for 0 ≤ p ≤ 1)
x1

v

x2

1 2 3 4 5

1

2

3

4

5

6

6 u

d2 (!u,!v) = 3.6

d1 (!u,!v) = 5

dp (u, v) := |u1 − v1|p + · · ·+ |un − vn|p

d0 (u, v) = #
{
i
∣∣ ui 6= vi

}
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DSM parameters A taxonomy of DSM parameters

Computing distances

Preparation: store “scored” matrix in DSM object
> TT <- dsm.score(TT, score="freq", transform="log")

Compute distances between individual term pairs . . .

> pair.distances(c("cat","cause"), c("animal","effect"),
TT, method="euclidean")

cat/animal cause/effect
4.16 1.53

. . . or full distance matrix.

> dist.matrix(TT, method="euclidean")
> dist.matrix(TT, method="minkowski", p=4)
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DSM parameters A taxonomy of DSM parameters

Distance and vector length = norm

I Intuitively, distance
d (u, v) should correspond
to length ‖u− v‖ of
displacement vector u− v

I d (u, v) is a metric
I ‖u− v‖ is a norm
I ‖u‖ = d

(
u, 0
)

I Such a metric is always
translation-invariant

I dp (u, v) = ‖u− v‖p

x1

origin

v

x2

1 2 3 4 5

1

2

3

4

5

6

6 u‖!u‖ = d
(
!u,!0

)

d (!u,!v) = ‖!u − !v‖

‖!v‖ = d
(
!v,!0

)

I Minkowski p-norm for p ∈ [1,∞] (not p < 1):

‖u‖p :=
(
|u1|p + · · ·+ |un|p

)1/p
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DSM parameters A taxonomy of DSM parameters

Normalisation of row vectors

I Geometric distances only
meaningful for vectors of the
same length ‖x‖

I Normalize by scalar division:
x′ = x/‖x‖ = ( x1

‖x‖ ,
x2
‖x‖ , . . .)

with ‖x′‖ = 1
I Norm must be compatible

with distance measure!
I Special case: scale to relative

frequencies with
‖x‖1 = |x1|+ · · ·+ |xn|
Ü probabilistic interpretation
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DSM parameters A taxonomy of DSM parameters

Norms and normalization

> rowNorms(TT$S, method="euclidean")
cat dog animal time reason cause effect

6.90 8.96 8.82 10.29 8.13 6.86 6.52

> TT <- dsm.score(TT, score="freq", transform="log",
normalize=TRUE, method="euclidean")

> rowNorms(TT$S, method="euclidean") # all = 1 now
> dist.matrix(TT, method="euclidean")

cat dog animal time reason cause effect
cat 0.000 0.224 0.473 0.782 1.121 1.239 1.161
dog 0.224 0.000 0.398 0.698 1.065 1.179 1.113
animal 0.473 0.398 0.000 0.426 0.841 0.971 0.860
time 0.782 0.698 0.426 0.000 0.475 0.585 0.502
reason 1.121 1.065 0.841 0.475 0.000 0.277 0.198
cause 1.239 1.179 0.971 0.585 0.277 0.000 0.224
effect 1.161 1.113 0.860 0.502 0.198 0.224 0.000
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DSM parameters A taxonomy of DSM parameters

Other distance measures

I Information theory: Kullback-Leibler (KL) divergence for
probability vectors (+ non-negative, ‖x‖1 = 1)

D(u‖v) =
n∑

i=1
ui · log2

ui
vi

I Properties of KL divergence
I most appropriate in a probabilistic interpretation of M
I zeroes in v without corresponding zeroes in u are problematic
I not symmetric, unlike geometric distance measures
I alternatives: skew divergence, Jensen-Shannon divergence

I A symmetric distance measure (Endres and Schindelin 2003)

Duv = D(u‖z) + D(v‖z) with z = u + v
2
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DSM parameters A taxonomy of DSM parameters

Similarity measures

I Angle α between vectors
u, v ∈ Rn is given by

cosα =
∑n

i=1 ui · vi√∑
i u2

i ·
√∑

i v2
i

= uTv
‖u‖2 · ‖v‖2

I cosine measure of
similarity: cosα

I cosα = 1 Ü collinear
I cosα = 0 Ü orthogonal

I Corresponding metric:
angular distance α
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DSM parameters A taxonomy of DSM parameters

Overview of DSM parameters

pre-processed corpus with linguistic annotation

define target & feature termsdefine target terms

define target & feature termsdefine target terms

type & size of co-occurrence

type & size of co-occurrence

context tokens or types

context tokens or types

M

M

feature scaling

feature scaling

similarity/distance measure + normalization

similarity/distance measure + normalization

dimensionality reduction

dimensionality reduction

term-term matrixterm-context matrix

probabilistic analysisgeometric analysis
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DSM parameters A taxonomy of DSM parameters

Dimensionality reduction = model compression

I Co-occurrence matrix M is often unmanageably large
and can be extremely sparse

I Google Web1T5: 1M × 1M matrix with one trillion cells, of
which less than 0.05% contain nonzero counts (Evert 2010)

å Compress matrix by reducing dimensionality (= rows)

I Feature selection: columns with high frequency & variance
I measured by entropy, chi-squared test, nonzero count, . . .
I may select similar dimensions and discard valuable information
I joint selection of multiple features is useful but expensive

I Projection into (linear) subspace
I principal component analysis (PCA)
I independent component analysis (ICA)
I random indexing (RI)

+ intuition: preserve distances between data points
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DSM parameters A taxonomy of DSM parameters

Dimensionality reduction & latent dimensions

Landauer and Dumais (1997) claim that LSA dimensionality
reduction (and related PCA technique) uncovers latent
dimensions by exploiting correlations between features.

I Example: term-term matrix
I V-Obj cooc’s extracted from BNC

I targets = noun lemmas
I features = verb lemmas

I feature scaling: association scores
(modified log Dice coefficient)

I k = 111 nouns with f ≥ 20
(must have non-zero row vectors)

I n = 2 dimensions: buy and sell

noun buy sell
bond 0.28 0.77
cigarette -0.52 0.44
dress 0.51 -1.30
freehold -0.01 -0.08
land 1.13 1.54
number -1.05 -1.02
per -0.35 -0.16
pub -0.08 -1.30
share 1.92 1.99
system -1.63 -0.70
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DSM parameters A taxonomy of DSM parameters

Dimensionality reduction & latent dimensions

0 1 2 3 4

0
1

2
3

4

buy

se
ll

acre

advertising

amount

arm

asset

bag

beer
bill

bit

bond book

bottle

box
bread

building

business

car

card

carpet

cigarette
clothe

club

coal

collection
company

computer

copy

couple

currency

dress

drink

drug
equipmentestate

farm

fish

flat

flower

food
freehold

fruitfurniture

good

home

horse

house

insurance

item

kind

land

licence

liquor

lot
machine

material

meat milk
mill

newspaper

number

oil

one

packpackage
packet

painting

pair

paperpart

per

petrol

picture

piece

place

plant

player

pound

productproperty

pub

quality

quantity

range

record

right

seat
security

service

set

share

shoe

shop

site
software

stake

stamp

stock

stuff

suit

system

television

thing

ticket

time

tin

unit

vehicle

video

wine

work

year

© Evert/Lenci/Baroni/Lapesa (CC-by-sa) DSM Tutorial – Part 2 wordspace.collocations.de 54 / 74



DSM parameters A taxonomy of DSM parameters

Motivating latent dimensions & subspace projection

I The latent property of being a commodity is “expressed”
through associations with several verbs: sell, buy, acquire, . . .

I Consequence: these DSM dimensions will be correlated

I Identify latent dimension by looking for strong correlations
(or weaker correlations between large sets of features)

I Projection into subspace V of k < n latent dimensions
as a “noise reduction” technique Ü LSA

I Assumptions of this approach:
I “latent” distances in V are semantically meaningful
I other “residual” dimensions represent chance co-occurrence

patterns, often particular to the corpus underlying the DSM
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DSM parameters A taxonomy of DSM parameters

Centering the data set

I Uncentered
data set

I Centered
data set

I Variance of
centered data

σ2 = 1
k−1

k∑
i=1
‖x(i)‖2
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DSM parameters A taxonomy of DSM parameters

Projection and preserved variance: examples
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DSM parameters A taxonomy of DSM parameters

Projection and preserved variance: examples
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DSM parameters A taxonomy of DSM parameters

Projection and preserved variance: examples
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DSM parameters A taxonomy of DSM parameters

Projection and preserved variance: examples
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DSM parameters A taxonomy of DSM parameters

Orthogonal PCA dimensions
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DSM parameters A taxonomy of DSM parameters

Dimensionality reduction in practice

# it is customary to omit the centring: SVD dimensionality reduction
> TT2 <- dsm.projection(TT, n=2, method="svd")
> TT2

svd1 svd2
cat -0.733 -0.6615
dog -0.782 -0.6110
animal -0.914 -0.3606
time -0.993 0.0302
reason -0.889 0.4339
cause -0.817 0.5615
effect -0.871 0.4794

> x <- TT2[, 1] # first latent dimension
> y <- TT2[, 2] # second latent dimension
> plot(TT2, pch=20, col="red",

xlim=extendrange(x), ylim=extendrange(y))
> text(TT2, rownames(TT2), pos=3)
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DSM parameters Examples

Some well-known DSM examples
Latent Semantic Analysis (Landauer and Dumais 1997)

I term-context matrix with document context
I weighting: log term frequency and term entropy
I distance measure: cosine
I dimensionality reduction: SVD

Hyperspace Analogue to Language (Lund and Burgess 1996)

I term-term matrix with surface context
I structured (left/right) and distance-weighted frequency counts
I distance measure: Minkowski metric (1 ≤ p ≤ 2)
I dimensionality reduction: feature selection (high variance)
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DSM parameters Examples

Some well-known DSM examples
Infomap NLP (Widdows 2004)

I term-term matrix with unstructured surface context
I weighting: none
I distance measure: cosine
I dimensionality reduction: SVD

Random Indexing (Karlgren and Sahlgren 2001)

I term-term matrix with unstructured surface context
I weighting: various methods
I distance measure: various methods
I dimensionality reduction: random indexing (RI)
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DSM parameters Examples

Some well-known DSM examples
Dependency Vectors (Padó and Lapata 2007)

I term-term matrix with unstructured dependency context
I weighting: log-likelihood ratio
I distance measure: information-theoretic (Lin 1998)
I dimensionality reduction: none

Distributional Memory (Baroni and Lenci 2010)

I term-term matrix with structured and unstructered
dependencies + knowledge patterns

I weighting: local-MI on type frequencies of link patterns
I distance measure: cosine
I dimensionality reduction: none
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Building a DSM Sparse matrices

Scaling up to the real world

I So far, we have worked on minuscule toy models
+ We want to scale up to real world data sets now

I Example 1: window-based DSM on BNC content words
I 83,926 lemma types with f ≥ 10
I term-term matrix with 83,926 · 83,926 = 7 billion entries
I standard representation requires 56 GB of RAM (8-byte floats)
I only 22.1 million non-zero entries (= 0.32%)

I Example 2: Google Web 1T 5-grams (1 trillion words)
I more than 1 million word types with f ≥ 2500
I term-term matrix with 1 trillion entries requires 8 TB RAM
I only 400 million non-zero entries (= 0.04%)
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Building a DSM Sparse matrices

Sparse matrix representation
I Invented example of a sparsely populated DSM matrix

eat get hear kill see use

boat · 59 · · 39 23
cat · · · 26 58 ·
cup · 98 · · · ·
dog 33 · 42 · 83 ·
knife · · · · · 84
pig 9 · · 27 · ·

I Store only non-zero entries in compact sparse matrix format
row col value row col value
1 2 59 4 1 33
1 5 39 4 3 42
1 6 23 4 5 83
2 4 26 5 6 84
2 5 58 6 1 9
3 2 98 6 4 27
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Building a DSM Sparse matrices

Working with sparse matrices

I Compressed format: each row index (or column index) stored
only once, followed by non-zero entries in this row (or column)

I convention: column-major matrix (data stored by columns)

I Specialised algorithms for sparse matrix algebra
I especially matrix multiplication, solving linear systems, etc.
I take care to avoid operations that create a dense matrix!

I R implementation: Matrix package
I essential for real-life distributional semantics
I wordspace provides additional support for sparse matrices

(vector distances, sparse SVD, . . . )

I Other software: Matlab, Octave, Python + SciPy
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Building a DSM Example: a verb-object DSM
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Building a DSM Example: a verb-object DSM

Triplet tables
I A sparse DSM matrix can be represented as a table of triplets

(target, feature, co-occurrence frequency)
I for syntactic co-occurrence and term documents, marginals

can be computed from a complete triplet table
I for surface and textual co-occurrence, marginals have to be

provided in separate files (see ?read.dsm.triplet)

noun rel verb f mode

dog subj bite 3 spoken
dog subj bite 12 written
dog obj bite 4 written
dog obj stroke 3 written
. . . . . . . . . . . . . . .

I DSM_VerbNounTriples_BNC contains additional information
I syntactic relation between noun and verb
I written or spoken part of the British National Corpus
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Building a DSM Example: a verb-object DSM

Constructing a DSM from a triplet table

I Additional information can be used for filtering (verb-object
relation), or aggregate frequencies (spoken + written BNC)

> tri <- subset(DSM_VerbNounTriples_BNC, rel == "obj")

I Construct DSM object from triplet input
I raw.freq=TRUE indicates raw co-occurrence frequencies

(rather than a pre-weighted DSM)
I constructor aggregates counts from duplicate entries
I marginal frequencies are automatically computed

> VObj <- dsm(target=tri$noun, feature=tri$verb,
score=tri$f, raw.freq=TRUE)

> VObj # inspect marginal frequencies (e.g. head(VObj$rows, 20))
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Building a DSM Example: a verb-object DSM

Exploring the DSM

> VObj <- dsm.score(VObj, score="MI", normalize=TRUE)

> nearest.neighbours(VObj, "dog") # angular distance
horse cat animal rabbit fish guy
73.9 75.9 76.2 77.0 77.2 78.5

cichlid kid bee creature
78.6 79.0 79.1 79.5

> nearest.neighbours(VObj, "dog", method="manhattan")
# NB: we used an incompatible Euclidean normalization!

> VObj50 <- dsm.projection(VObj, n=50, method="svd")
> nearest.neighbours(VObj50, "dog")
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Building a DSM Example: a verb-object DSM
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