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Getting the updated code

START AS SOON AS YOU ENTER THE ROOM! (PLEASE)

’IMPORTANT AS ALL THE NEW DATASETS ARE IN‘

@ Approach 1: Use git (updateable, recommended if you have git)

@ In your terminal, type: 'git clone
https://github.com/bjerva/esslli-learning-from-data-students.git’

@ Followed by 'cd esslli-learning-from-data-students’

© Whenever the code is updated, type: 'git pull’

@ Approach 2: Download a zip (static)

© Download the zip archive from: https://github.com/bjerva/
esslli-learning-from-data-students/archive/master.zip
© Whenever the code is updated, download the archive again.

Malvina & Johannes LFD — Lecture 5 ESSLLI, 26 August 2016 2 /20


https://github.com/bjerva/esslli-learning-from-data-students/archive/master.zip
https://github.com/bjerva/esslli-learning-from-data-students/archive/master.zip

«Or «Fr o« y <= o

how to choose the “right” algorithm?



classification

scikit-learn
algorithm cheat-sheet
data No

regression

NoT
WORKING

dimensionality
reduction

o>



General points Classification vs Regression

Classification vs Regression

create models of prediction from gathered data
@ classification
the dependent variables are categorical

e input x: feature vector
e output: discrete class label

@ regression
the dependent variables are numerical

e input x: feature vector
e output y: continuous value
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General points  Supervised vs Unsupervised

classification and regression are the most standard ways of doing
supervised learning
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General points  Supervised vs Unsupervised

Supervised and Unsupervised Learning

information about the correct distribution/label of the training examples
@ in supervised learning it is known

— fitting a model to labelled data which has the correct answer
associated to it

@ in unsupervised learning it is not known

— finding structure in unlabelled data
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1 Training
Text, Feature
Documents,

|::> Vectors
Images,
etc.

[ ; Machine

Learning
Algorithm

I Labels | :>

Feature
New Text, Vector
Document, | | Expected
Image, Label
etc.

source: http://wuw.astroml.org/



http://www.astroml.org/

Unsupervised Learning Model
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General points Unsupervised learning

Supervised learning

supervised learning — classification or regression

@ in training, instances are associated with their class label

@ based on features, the system must search for patterns and build a
model

@ the model must be able to predict the class of previously unseen
instances
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General points Unsupervised learning

Unsupervised learning

unsupervised learning — clustering
@ partitioning instances into subsets (clusters) that share similar
characteristics
@ subsets are not predefined

@ a system can be told how many clusters it should form (K-means
algorithm)
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Practice

(Your) Datasets

@ Ok Cupid (4 tasks)
@ Word Sense Disambiguation in Russian (4 words)
@ Slovene Regional Language Variants

@ Pragmatic conditionals
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Find better matches

Similar users

I'm really good at

The first things people usually notice about me

My details
Favorite books, movies, shows, music, and food

bigtv watch a

You should message me if

Q>



My details

ratches

My self-summary
ffe here in D¢

he gym, finding g
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Favorite books, movies, shows, music, and food
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username age body _type diet drinks drugs education

working on

22alitie extra vegetarian socially never il BT

Essay4 - Favorite books, movies, Essay5 - The six things | Essay6 - | spend a lot Essay7 - On a typical
of time thinking about Friday

shows, music and food could never do without
books:<br /> a istan, the
republic, of mice and men (only
book that made me want to cry),
catcher in the rye, the prince.<br />
<br /> movies:<br /> gladiator,

phone.<br /> shelter.

ethnicity height income job last_online location

doesn't al
have kids,
but might

want them

asian, -1 student 2012-06-28-20-30 22Kand

white

>food.<m /> water.<br /> cell duality and humorous

offspring orientation pets

Essay0 - My self-summary Essayl - What I'm doing
with my life
currently working as an
international agent for a
»reight forwarding company.

| would love to think that i
was some some kind of
intellectual: either the
dumbest smart guy, or the

smartest dumb guy. can't  know the

ht, | am

trying to find someone to
hang out with. i am down
for anything except a
club.

religion

osticism
very
serious
about it

likes dogs aﬁg
and likes
cats

straight m

import, export, domestic you  simplicity in complexity, and
works.<br /> online  complexity in simplicity.

Essay8 - The most private
thing I'm wil
i am new to california and

looking for someone to
my secrets to.

sex sign

Essay3 - The first thing people
notice about me

Essay2 - I'm really good at

making people laugh.<br />
ranting about a good
»salting,<br /> finding

the way i look. i am a six foot half
asian, half caucasian mutt. it
makes it tough not to notice me,
and for me to blend in

Essay9 - You should

message me if

you want to be swept off your

feetl<br /> you are tired of the
2r norm.<br /> you want to catch

a coffee or a bite.<br /> or if

you want to talk philosophy.

ling to admit

smokes peaks status

gemini sometimes english single

Q>




THE OKCUPID DATASET

FOUR TASKS

» Predict GENDER

» Predict ORIENTATION
» Predict DIET

» Predict SIGN

NB: there is one dataset per task

«0» «F» «E>»

«E>»

Q>



WSD for Russian nouns

Task: to predict word sense given context
Words: lavka (2), kran (2), kosak (4), ruchka (5)
Contexts:

- 185 - 200 for each word

- from the Internet corpus

- about 10 words before and after the target word
Variations:

- left context / full context

- with lemmatization / without lemmatization

u]
8
1l
it

o>



WSD for Russian nouns

lavka




WSD for Russian nouns. Datasets

..left_tokenized

..left_tokenized_lemmatized

lavka

...full_tokenized

...full_tokenized_lemmatized

label

text-cat

targetword-cat

00EeCCUT Uropb KOTOPBIV Yxe NprBnekancs
K OTBETCTBEHHOCTU 3a pa3bon 1 35 neTHun
Banepui 3anas B lOBENIMPHON HAHECU
TSIKKME TernecHble NoBpeXaeHns npoaasLy
KacTeTomM TpaBMMpPOBanu NMLO 1 BCE Xe
[OeByLLKe yaanochb

naBke
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Classification of Slovene Regional
Language Variants

* Dataset: Slovene tweets manually annotated by user's region
of origin
— 4 out of 7 Slovene regions (Gorenjska, Dolenjska, Stajerska, Primorska)
— 500 tweets per region = 2000 tweets

* Task: build a model to predict the regional language variant of
Slovene tweets

498 Dolenjska,@LukaD_ saj bi si Se skoraj verjel ... jeba, hokej je za zveler. Sporo¢, da ni ni¢ hujsga.

499 Dolenjska,@klavdijaactual sam da ni zamrzjeno ;)

500 Dolenjska,@matijal0 @GregaBorinc @lisjakm ravno danes pono¢ sem izgubil svoj dormeo, ker so moje put
501 Dolenjska,@PristovnikB okol jurja ja, mal manj mogoce. Pr nas so bl hribcki. Urca pa pol pa se to se mi ni d:
502 Gorenjska,Razturil ene 5 ljudi kot pobegli vlak. Carski filing, ko mors iz sebe spravt vso sranje, ki se nabere t¢
503 Gorenjska,@sivanosoroginja Je pa nekej,de mam jst v¢ Sampanca,kt Ti jastoga. . . pa dobr'tek ;)

504 Gorenjska,@rjutri ce bi na glas povedala bi me zihr dal na koruzo hihi

505 Gorenjska,@JsSmRenton sej, jaz morm tud kaj zasluZiti... Zato pa za pol gnara, se prsparas. D

506 Gorenjska,@StellarGirl_ ce kdo rabi pojasnilo, potem je robot! Fuck 'em alll :*

507 Gorenjska,@KoMelita jah, men so ble use¢, zato sm jih tut kupu. pojamram pa zato k niso ble lih zastonj, p:



Practice
Pragmatic conditionals: ‘if p, g’ (Chi-Hé Elder, c elder@uea.ac.uk)

Categories

@ res = resultative (‘if you take the class you will learn a lot")
inf = inferential ('if it's 6.30 the class must be over')
pch = propositional content hedge ('if | remember rightly...")
ifh = illocutionary force hedge ('...if you see what | mean’)

tm = topic marker (‘if you think about conditionals, they usually start
with ‘if")

e dir = directive ('if you could just pay attention...")
Features

@ ‘Primary meaning’ (the main message communicated)
- Bare form ‘if p, q'; p only; g only; enriched forms p’, ¢, etc;
completely overridden logical form r

@ Speech act type (A = assertive, D = directive, C = commissive)
e Conditionality of p and g (Y/N)
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Practice

Practical session

@ running experiments in small groups (2-3)

@ reporting on experiments (a couple of minutes per group, depending
on how many groups there are)

task

dataset

set up
features
classifier
results

any reflections
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Practice

General commands

general options
@ --max-train-size N (maximum number of training samples to look at)
@ --nchars N --nwords N --features X Y Z
visualisation options
@ —-cm (print confusion matrix + classification report)
@ —-plot (shows CM)
algorithm-specific options
@ K-Nearest Neighbor (knn): —-k N
@ Decision Tree (dt): --max-nodes N --min-samples N

example run

python run _experiment.py --csv data/trainset-sentiment-extra.csv
--nchars 1 --algorithms svm --cm

Look into data folder for datasets’ names (tasks with more datasets have own dir
under data)
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Practice

Datasets names

@ Ok Cupid (4 tasks)

okcupid/okcupid data_diet.csv
okcupid/okcupid_data_orientation.csv
okcupid/okcupid_data_sex.csv
okcupid/okcupid_data_sign.csv

e Word Sense Disambiguation in Russian (4 words)

e look into russian_wsd/: 16 files (4 different settings per word)
@ Slovene Regional Language Variants

@ slovene-dialects.csv
@ Pragmatic conditionals

e trainif.csv
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Practice

Running on a real test set

With a simple modification you can apply to the run_experiment.py
script, you can eventually evaluate your model on completely unseen data:
a 15% of the whole dataset that gets held out while you develop.

Change:

#print (’\nResults on the test set:’)
#evaluate_classifier(clf, test X, test_y, args)

to

print (’\nResults on the test set:’)
evaluate_classifier(clf, test X, test_y, args)
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End

Bye bye

General issues  Gain

Take home message and skills

@ basic knowledge on what learning from data means and how it works
e general settings and procedures
@ main, classic, algorithms

@ tools to run your own experiments on your own datasets

i 0 ey LFDL - Leciure 1 2 At 205 3/ 41
Malvina: m.nissim@rug.nl
Johannes: j.bjerva@rug.nl

repo: github.com/bjerva/esslli-learning-from-data-students
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