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queries with negation or other
forms of recursion



queries with negation

Conjunctive query with safe negation (CQ¬s):
∙ like a CQ, but can also have negated atoms
∙ safety condition: every variable occurs in some positive atom
∙ example: find menus whose main course is not spicy

∃yMenu(x) ∧ hasMain(x, y) ∧ ¬Spicy(y)

Conjunctive query with inequalities (CQ̸=)
∙ like a CQ, but can also have atoms t1 ̸= t2 (t1, t2 vars or individuals)
∙ example: find restaurant offering two menus having different
dessert courses

∃y1y2z1z2 offers(x, y1) ∧Menu(y1) ∧ hasDessert(y1, z1)∧
offers(x, y2) ∧Menu(y2) ∧ hasDessert(y2, z2) ∧ z1 ̸= z2

∙ example: find menus with at least three courses

Note: can define UCQ¬ss and UCQ̸=s in the obvious way
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undecidability results for queries with negation

Adding negation leads to undecidability even in very restricted
settings

Theorem The following problems are undecidable:

∙ CQ¬s answering in DL-LiteR
∙ UCQ¬s answering in EL
∙ CQ̸= answering in DL-LiteR
∙ CQ̸= answering in EL
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an undecidable tiling problem

Unbounded tiling problem: (T,H, V, T0)

∙ T is a set of tile types
∙ V ⊆ T× T and H ⊆ T× T are the vertical and horizontal
compatibility relations

∙ T0 ∈ T is the initial tile type

We want to tile an N× N corridor

∙ T0 must be placed in bottom-left corner
∙ Neighboring tiles must respect V and H

An unbounded tiling simulates a (non-det. ) Turing Machine
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undecidability of cqs with safe negation for lightweight dls

We only need the folowing TBox, to generate points of the grid:

T = {Point⊑ ∃h,Point⊑ ∃v, ∃h− ⊑ Point, ∃v− ⊑ Point}

Check for errors in the grid or tiling, using UCQ q with disjuncts:

∃x.Point(x) ∧ ¬T1(x) · · · ∧ ¬Tn(x)
∃x.Ti(x) ∧ Tj(x) i ̸= j, i, j ∈ {1, · · · ,n}

∃x, y.Ti(x) ∧ h(x, y) ∧
∧

(Ti,Tj )̸∈H

¬Tj(y) i ∈ {1, · · · ,n}

∃x, y.Ti(x) ∧ v(x, y) ∧
∧

(Ti,Tj )̸∈V

¬Tj(y) i ∈ {1, · · · ,n}

∃x1, x2, y1, y2.h(x1, x2) ∧ v(x1, y1) ∧ h(y1, y2) ∧ ¬v(x2, y2)

T , {A(c)} ̸|= q iff (T,H, V, t0) has a solution
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∙ CQ̸= answering in EL

Possible solution: adopt alternative semantics (epistemic negation)
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undecidability results for recursive datalog queries

Significant interest in combining DLs with Datalog rules, already in
the late 90s

Unfortunately, this almost always leads to undecidability:

Theorem Datalog query answering is undecidable in every DL that
can express (directly or indirectly) A⊑ ∃r.A

In particular: undecidable in both DL-Lite and EL

Possible solutions:
∙ use restricted classes of Datalog queries (e.g. path queries)
∙ DL-safe rules: can only apply rules to (named) individuals
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