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Computational Semantics 
• Day 1: Exploring Models 
• Day 2: Meaning Representations 
• Day 3: Computing Meanings 
• Day 4: Drawing Inferences 
• Day 5: Meaning Banking 



Questions after yesterday’s lecture 
•  Inferring from observations (“flying bird”) 
•  (Too?) detailed lexical semantics for verbs 
• Small (?) dataset of image models in GRIM  
• Adding probabilities 
• What are the “zero-place” symbols? 
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Constructing basic formulas 
• Suppose we’re given a model M and want to check 

whether this model satisfies certain descriptions 
•  For instance, perhaps we  

want to check whether there  
is a cat present 
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Constructing basic formulas 
• Suppose we’re given a model M and want to check 

whether this model satisfies certain descriptions 
•  For instance, perhaps we  

want to check whether there  
is a cat present 

• We could construct a formula by applying the one-place 
non-logical symbol CAT to a variable, say x: 
 
           CAT(x) 
 

• We can now check whether M satisfies this formula, but 
we need the help of an assignment function 



Variable assignment function 
• An assignment function maps all variables in a formula to 

an entity in the model’s domain 
• Usually a lowercase letter g is used to denote an 

assignment function 



Variable assignment function 
• An assignment function maps all variables in a formula to 

an entity in the model’s domain 
• Usually a lowercase letter g is used to denote an 

assignment function 
•  For instance, for two variables x and y and a domain with 

three entities d1, d2, and d3, the following assignment 
functions are possible: 
•  g1(x)=d1, g1(y)=d1 
•  g2(x)=d1, g2(y)=d2 
•  g3(x)=d1, g3(y)=d3 
•  g4(x)=d2, g4(y)=d1, 

etc. 



Satisfaction 
• Suppose we have this model: 
  and assignment: g(x)=d1 
  and this formula: CAT(x) 

  Does this model satisfy this formula wrt g? 
 
                                  M,g |= CAT(x) ? 
 
   

M=<D,F> 
D={d1,d2,d3} 
F(CAT)={d2} 
F(DOG)={d1,d3} 
F(TOUCHES)={(d3,d2)} 



Satisfaction 
• Suppose we have this model: 
  and assignment: g(x)=d1 
  and this formula: CAT(x) 

  Does this model satisfy this formula wrt g? 
 
                                  M,g |= CAT(x) ? 
 
  Only if g(x) is in F(CAT) 

M=<D,F> 
D={d1,d2,d3} 
F(CAT)={d2} 
F(DOG)={d1,d3} 
F(TOUCHES)={(d3,d2)} 



Logic should not be a lottery 
•  There is clearly a cat in our model,  

but the answer we get is false... 
• We only get true if we pick out the right value for x 
• But we don’t want to rely on luck! 

 



Existential quantification 
•  Logic has a well-known device to avoid being dependent 

on luck: 
 

                                ∃  
 
The existential quantifier is always connected to a 
variable:    
 
                  If F is a formula, and x a variable,  
                  then ∃xF is a formula. 



Giuseppe Peano 
Italian mathematician, 
founder of mathematical 
logic (1858-1932) 
 
 
 
 
 
 
 
 
source: en.wikipedia.org 



Satisfaction again 

• Suppose we have this model: 
• And assignment: g(x)=d1 
• And this formula: ∃xCAT(x) 

  Does this model (let’s call it M) satisfy this formula wrt g? 
 
                                  M,g |= ∃xCAT(x) ? 
 
Only if M,g’ |= CAT(x), where g’ is a copy of g but changes 
are allowed only with respect to x. E.g.: g’(x)=d2 

M=<D,F> 
D={d1,d2,d3} 
F(CAT)={d2} 
F(DOG)={d1,d3} 
F(TOUCHES)={(d3,d2)} 



Constructing complex formulas 
• Suppose we’re given a model M and want to check 

whether this model satisfies multiple descriptions 
•  For instance, perhaps we want to check whether there is 

a cat present and that it is white 
• We could construct two basic formulas and form a 

conjunction (using a new symbol ∧ and brackets): 
 
           [CAT(x) ∧ WHITE(x)] 

• We can now check whether M satisfies this formula. 



Satisfaction again 

• Suppose we have this model M: 
• And assignment: g(x)=d1 
• And this formula: [CAT(x)∧WHITE(x)] 

  Does M satisfy this formula wrt g? 
 
                                  M,g |= [CAT(x)∧WHITE(x)]  ? 
 
  Only if M,g |= CAT(x)   and   M,g |= WHITE(x)  

M=<D,F> 
D={d1,d2,d3} 
F(CAT)={d2} 
F(DOG)={d1,d3} 
F(WHITE)={d2,d3} 



Constructing negated formulas 
• Suppose we’re given a model M and want to check 

whether this model does not satisfy a certain description 
•  For instance, perhaps we want to check that there is no 

dog present, or that there are no sleeping cats around 
• We can do this by introducing a negation: ¬ 

A negated formula is simply formed by putting ¬ in front 
 
           ¬DOG(x) 

A model satisfies a negated formula F iff it doesn’t satisfy F  
    M,g |= ¬DOG(x) iff it is not the case that M,g|=DOG(x) 



Ingredients of a first-order language 
1.  All symbols in the vocabulary – the non-logical symbols 

of the first-order language 
2.  Enough variables (a countably infinite collection):  

x, y, z, etc. 
3.  The Boolean connectives ¬ (negation), ∧ 

(conjunction), ∨ (disjunction), and → (implication) 
4.  The quantifiers ∀ (the universal quantifier) and ∃ (the 

existential quantifier) 
5.  Some punctuation symbols:  

brackets and the comma. 



George Boole 
English mathematician, 
pioneer of modern 
mathematical logic 
(1815-1864) 
 
 
 
 
 
 
 
 
source: en.wikipedia.org 



First-order terms 
• Any constant or any variable is a first-order term 
• Constants are sometimes called 0-place predicates 
•  Terms are the “noun phrases” of first-order languages 

•  constants are first-order analogs of proper names 
•  variables are first-order analogs of pronouns 

 
 



Atomic formulas 
•  If R is a relation symbol of arity n, and t1,...,tn are terms, 

then R(t1,....,tn) is an atomic formula 
•  If t1 and t2 are terms, then t1 = t2  is an atomic formula 
 



Well formed formulas (wffs) 
1.  All atomic formulas are wffs 
2.  If φ and ψ are wffs,  

then so are ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ) 
3.  If φ is a wff, and x is a variable,  

then both ∃xφ and ∀xφ are wffs 
[φ is the scope of the quantifier ∃/∀] 

4.  Nothing else is a wff 
 



Well formed formulas (wffs) 
1.  All atomic formulas are wffs 
2.  If φ and ψ are wffs,  

then so are ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ) 
3.  If φ is a wff, and x is a variable,  

then both ∃xφ and ∀xφ are wffs 
[φ is the scope of the quantifier ∃/∀] 

4.  Nothing else is a wff 
 



Free and Bound Variables 
• An occurrence of a variable is free in a formula ψ if it is 

not bound in ψ 
• An occurrence of a variable x is bound in a formula ψ if it 

appears in the scope of a quantifier ∃x or ∀x in ψ 



Closed formulas 
•  Formulas that have no free variables are called closed 
• Usually we’re only interested in closed formulas  
•  Translating a natural language sentence to first-order logic 

should produce a closed formula 
•  Free variables can be  

thought of as “pronouns”  



Logicians are only human 
• Logicians (and mathematicians) are usually very 
precise in their formulations 

• However, they sometimes drop punctuation 
symbols if no confusion arises 

• Often outermost brackets are dropped; also other 
brackets as long as no confusion arises 

• Examples:  
p ∧ q          instead of  (p ∧ q)  
p ∨ (q ∧ r)  instead of  (p ∨ (q ∧ r))  
(p ∨ q ∨ r)  instead of  (p ∨ (q ∨ r))  



The satisfaction definition for FOL 



Do we really need all this stuff? 
•  implication 
•  disjunction 
•  quantifiers 



A note on notation… 

• Negation:          ¬  or  ∼ 
• Conjunction:      ∧  or  & 
•  Implication:       →  or   ⊃ 
• Equivalence:     ↔  or   ≡ 
• Brackets:          (…) or  […] 



A note on naming… 

First-order logic = predicate logic = classical/standard logic 



What’s wrong with these translations? 

English First-order logic 
A dog barks. ∃x(dog(x) →  bark(x)) 
Vincent likes every dog. ∀x(dog(x) ∧ like(vincent,x))  
No dog barks. ∃x(dog(x) ∧ ¬bark(x)) 
Every dog chases a cat. ∀x(dog(x) → ∃y(cat(y) ∧ chase(y,x))  



What’s wrong with these translations? 

English First-order logic 
A dog barks. ∃x(dog(x) ∧ bark(x)) 
Vincent likes every dog. ∀x(dog(x) → like(vincent,x))  
No dog barks. ¬∃x(dog(x) ∧ bark(x)) 
Every dog chases a cat. ∀x(dog(x) → ∃y(cat(y) ∧ chase(x,y))  



Model Checking 

•  The task of the determining whether a given model 
satisfies a formula (or a set of formulas) 
 

      Input: model + formula 
   Output: true or false  



Model Checking 

M=<D,F> 
D={d1,d2,d3,d4} 
F(mia)=d1 
F(honey-bunny)=d2 
F(vincent)=d3 
F(yolanda)=d4 
F(customer)={d1,d3} 
F(robber)={d2,d4} 
F(love)={(d4,d2),(d3,d1)} 

Q1: Does M satisfy:  ∃x(customer(x) ∧ ∃y(customer(y) ∧ love(x,y))) 
Q2: Does M satisfy:  ∃x(robber(x) ∧ love(x,x)) 



Model Checking (“amazing” demo) 

1.  ~/grim % cat scripts/model_checker.pl | more 
2.  scripts/_checkmodels "some(X,n_cat_1(X))” 
3.  scripts/_checkmodels "some(X,n_cat_1(X))” > out.tex 
4.  pdflatex out 



Model Checking (“amazing” demo) 

Nice examples (1): 
 a cat and dog 

           a cat and a dog 
 a white cat and a dog 

 
Nice examples (2): 

 a bicycle 
           a woman and a bicycle 

 a woman on a bicycle 
 



Combining Model Extraction & Model Checking 

A man threw a bottle in the ocean.   
A woman wrote a letter.   
Someone dropped two bottles in the sea.   
A man with a beard wrote something on a piece of paper.  



Combining Model Extraction & Model Checking 

A man threw a bottle in the ocean. ✓  
A woman wrote a letter. ✗  
Someone dropped two bottles in the sea. ✗  
A man with a beard wrote something on a piece of paper. ✓ 



Different kinds of meaning representations 
• Expressive power 
•  FOL, DRS, AMR 
• Syntax 
• Semantics 



What is a good meaning representation? 
• All-purpose? Or tailored to specific application? 

• Worry about inference efficiency? 
 

• Readability for humans? 
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Syntax of FOL (in Backus-Nauer Form, BNF) 

F ::= Pn(t1…tn) | 
         ¬F | 
         (F∧F) | 
         ∃x F 
 
Short version 
 
      F is a formula of first-order logic 
      Pn is a n-place non-logical symbol 
      t is a term (constant or variable) 
 



Syntax of FOL (in Backus-Nauer Form, BNF) 

F ::= Pn(t1…tn) | 
         ¬F | 
         (F∧F) | (F∨F) | (F→F) | 
         ∃x F | ∀x F 
 
Long version (with disjunction and universal quantifier) 
 
     F is a formula of first-order logic 
     Pn is a n-place non-logical symbol 
     t is a term (constant or variable) 
 



Syntax of FOL (in Backus-Nauer Form, BNF) 

F ::= Pn(t1…tn) | 
         ¬F |  t=t | 
         (F∧F) | (F∨F) | (F→F) | 
         ∃x F | ∀x F 
 
Long version with equality 
 
     F is a formula of first-order logic 
     Pn is a n-place non-logical symbol 
     t is a term (constant or variable) 



Back to yesterday’s events… 



t1 t2 t3 

kick(x,y) <=> abut(t1,t2) &  
                     abut(t2,t3) &  
                     near(t1,x,y) &  
                     touch(t2,x,y) &  
                     ¬near(t3,x,y) 
Pre-Davidsonian 
Analysis of an achievement event without explicit entities for events. 
Problem: integration of event modifiers. 



t1 t2 t3 

kick(e,x,y)∧time(e,t2) <=> abut(t1,t2) &  
                                            abut(t2,t3) &  
                                            near(t1,x,y) &  
                                            touch(t2,x,y) &  
                                            ¬near(t3,x,y) 
Davidsonian 
Analysis of an achievement event with explicit entities for events. 
Advantage: dealing with event modifiers (manner, temporal) 
Disadvantage: number of arguments not always consistent 



t1 t2 t3 

kick(e)∧agent(e,x)∧patient(e,y)∧time(e,t2) <=> abut(t1,t2) & 
                                                                                abut(t2,t3) &  
                                                                                 near(t1,x,y) &  
                                                                                 touch(t2,x,y) &  
                                                                                 ¬near(t3,x,y) 
neo-Davidsonian 
Analysis with explicit entities for events and explicit thematic roles. 
Advantage: consistent number of argument for event symbols 
Disadvantage: need an inventory of thematic roles 



t1 t2 t3 

kick(e,x,y,z) ∧time(e,t2) <=> abut(t1,t2) &  
                                               abut(t2,t3) &  
                                               near(t1,x,y) &  
                                               touch(t2,x,y) &  
                                              ¬near(t3,x,y) 
Hobbsian 
Analysis of all event with fixed number (4) of arguments. 
Advantage: consistent number of arguments 
Disadvantage: need dummy variables 



Other meaning representations 
•  First-order formula syntax not always handy 
• Readability (brackets…) 
• Dealing with pronouns in texts (rather than sentences) 
• Donkey sentences (where the article “a” seems to 

introduce a universal rather than an existential quantifier 

•  This lead in the early 1980s do the development of 
“dynamic” semantic theories such as DRT 



Syntax of DRS (in Backus-Nauer Form, BNF) 

B ::= [x1 … xn | C1 … Cm] 
C ::= ¬B | 
         B  v	
 B | 
         B => B | 
         Pn(x1,…xn) 
 
      B is a DRS (Discourse Representation Structure) 
      C is a DRS-condition 
      Pn is a n-place predicate symbol 
      x is discourse referent (variable) 
 



Comparing FOL with DRS syntax 
Every student kicked a lecturer. 
 
FOL: ∀x(student(x) →∃y(lecturer(y) ∧ kick(x,y))) 
DRS: [  | [x | student(x)]=>[y | lecturer(y),kick(x,y)]] 
 
   

 
 
 
                                    => 
 
 
 

x 
student(x) 

y 
lecturer(y) 
kick(x,y) 



Interpretation of DRS 
• But wait a minute?  

We don’t have a satisfaction definition for DRSs! 

•  Two possibilities: 
•  Translate DRS into FOL 
•  Give a satisfaction definition for DRS 

• Both are possible  
(see Kamp & Reyle, Muskens, and many others) 



x y e u v e’ 
Butch(x) 
chopper(y) 
stole(e) 
agent(e,x) 
theme(e,y) 
u=y 
garage(v) 
parked(e’) 
theme(e’,u)  
location(e’,v) 

neo-Davidsonian x y u v 
Butch(x) 
chopper(y) 
stole(x,y) 
u=y 
garage(v) 
parked-in(u,v) 

Butch stole a chopper.  
It was parked in a garage. x y e u v e’ 

Butch(x) 
chopper(y) 
stole(e,x,y) 
u=y 
garage(v) 
parked(e’,u)  
in(e’,v) 

Davidsonian 

no events 

x y e u v e’ a b c d 
Butch(x) 
chopper(y) 
stole(e,x,a,b) 
agent(e,x) 
u=y 
garage(v) 
parked(e’,u,c,d) 
in(e’,v) 

Hobbsian 



Abstract Meaning Representations 
• Simple meaning representations without explicit scope 

and quantifiers 
• Relatively easy to edit by human beings 



Syntax of AMR (in Backus-Nauer Form, BNF) 

A ::=  c | 
         x | 
         (x / P1) | 
         (x/P1 :P2A  … :P2A) 
 
          
 
      A is an AMR (Abstract Meaning Representation) 
      Pn is a n-place predicate symbol 
      x is a variable 
      c is a constant 
 



“Johan wants money.”  AMR 
( e / want
    :ARGO ( x / johan )
    :ARG1 ( y / money ))



Comparing AMR to DRS 



“Johan wants money.”  DRS 

x y e 
johan(x) 
money(y) 
want(e) 
Agent(e,x) 
Theme(e,y) 



“Johan wants money.”  DRS 

x y e 
want(e) 
johan(x) 
money(y) 
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Theme(e,y) 



“Johan wants money.”  DRS 

x y e 
want(e) 
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Agent(e,x) 
johan(x) 
Theme(e,y) 



“Johan wants money.”  DRS 

x y e 
want(e) 
Agent(e,x) 
johan(x) 
Theme(e,y) 
money(y) 



“Johan wants money.”  DRS 

x y e 
want(e) 
   Agent(e,x) 
         johan(x) 
   Theme(e,y) 
         money(y) 



“Johan wants money.”  DRS 

x y e 
want(e) 
   :ARG0(e,x) 
         johan(x) 
   :ARG1(e,y) 
         money(y) 



“Johan wants money.”  DRS 

x y e 
(e / want 
   :ARG0(e,x) 
         (x / johan) 
   :ARG1(e,y) 
       (y / money)) 



“Johan wants money.” 

(e / want 
   :ARG0(e,x) 
         (x / johan) 
   :ARG1(e,y) 
       (y / money)) 



“Johan wants money.”  AMR 

(e / want 
   :ARG0 (x / johan) 
   :ARG1 (y / money)) 



“Johan wants money.”  AMR 
( e / want
    :ARGO ( x / johan )
    :ARG1 ( y / money ))



JOHAN wants money. 
( x / johan
    :ARGO-of ( e / want 
                 :ARG1 (y / money)))



Johan wants MONEY. 
( y / money
    :ARG1-of ( e / want 
                 :ARG0 (x / johan)))



Every student kicked a lecturer 
(x / student :polarity –
   :ARG0-of (e / kick :polarity -
               :ARG1 (y / lecturer)))



An observation about AMR 
AMRs without recurring variables are part of 
the 2-variable fragment of First-Order Logic 



It was a picture of a boa constrictor in the 
act of swallowing an animal. 
(p / picture 
   :domain (i / it) 
   :topic (b2 / boa
              :mod (c2 / constrictor) 
              :ARG0-of (s / swallow-01 
                          :ARG1 (a / 
animal))))
 
∃x(picture(x) &  
        ∃y(it(y) & domain(x,y)) & 
        ∃y(boa(y) & topic(x,y) & 
               ∃x(constrictor(x) & mod(y,x)) & 
             ∃x(swallow-01(x) & ARG0(x,y) & 
                                 ∃y(animal(y) & ARG1(x,y))))) 
 



Proper names 
“Mia is happy.” 
 
     happy(mia) 
           



Proper names 
“Mia is happy.” 
 
     happy(mia) 
     ∃x(x=mia ∧ happy(x)) 
      



Proper names 
“Mia is happy.” 
 
     happy(mia) 
     ∃x(x=mia ∧ happy(x)) 
     ∃x(person(x) ∧ named(x,mia) ∧ happy(x)) 
 



Proper names 
“Mia is happy.” 
 
     happy(mia) 
     ∃x(x=mia ∧ happy(x)) 
     ∃x(person(x) ∧ named(x,mia) ∧ happy(x)) 
     ∃x∃y(person(x)∧has(x,y)∧name(y)∧y=mia∧happy(x)) 
 



Proper names 
“Mia is happy.” 
 
     happy(mia) 
     ∃x(x=mia ∧ happy(x)) 
     ∃x(person(x) ∧ named(x,mia) ∧ happy(x)) 
     ∃x∃y(person(x)∧has(x,y)∧name(y)∧y=mia∧happy(x)) 
     ∃x(mia(x) ∧ happy(x)) 
      
 



FOL, DRS, AMR 
• All first-order representations of meaning 
• But with different properties 

•  Logical aspects (negation, quantification) 
•  Human readability 
•  Information structure 
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