
COMPUTATIONAL
SEMANTICS: DAY 2
Johan Bos
University of Groningen
www.rug.nl/staff/johan.bos

Computational Semantics
• Day 1: Exploring Models
• Day 2: Meaning Representations
• Day 3: Computing Meanings
• Day 4: Drawing Inferences
• Day 5: Meaning Banking

Questions after yesterday’s lecture
•  Inferring from observations (“flying bird”)
•  (Too?) detailed lexical semantics for verbs
• Small (?) dataset of image models in GRIM
• Adding probabilities
• What are the “zero-place” symbols?

The Big Picture

Semantic
Parsing

Semantic
Parsing

Model
Extraction

Model
Checking

meaning

model

natural
language
statement

TRUE
or

FALSE

YESTERDAY

TOMORROW

Constructing basic formulas
• Suppose we’re given a model M and want to check

whether this model satisfies certain descriptions
•  For instance, perhaps we

want to check whether there
is a cat present

Constructing basic formulas
• Suppose we’re given a model M and want to check

whether this model satisfies certain descriptions
•  For instance, perhaps we

want to check whether there
is a cat present

• We could construct a formula by applying the one-place
non-logical symbol CAT to a variable, say x:

 CAT(x)

Constructing basic formulas
• Suppose we’re given a model M and want to check

whether this model satisfies certain descriptions
•  For instance, perhaps we

want to check whether there
is a cat present

• We could construct a formula by applying the one-place
non-logical symbol CAT to a variable, say x:

 CAT(x)

• We can now check whether M satisfies this formula, but
we need the help of an assignment function

Variable assignment function
• An assignment function maps all variables in a formula to

an entity in the model’s domain
• Usually a lowercase letter g is used to denote an

assignment function

Variable assignment function
• An assignment function maps all variables in a formula to

an entity in the model’s domain
• Usually a lowercase letter g is used to denote an

assignment function
•  For instance, for two variables x and y and a domain with

three entities d1, d2, and d3, the following assignment
functions are possible:
•  g1(x)=d1, g1(y)=d1
•  g2(x)=d1, g2(y)=d2
•  g3(x)=d1, g3(y)=d3
•  g4(x)=d2, g4(y)=d1,

etc.

Satisfaction
• Suppose we have this model:
 and assignment: g(x)=d1
 and this formula: CAT(x)

 Does this model satisfy this formula wrt g?

 M,g |= CAT(x) ?

M=<D,F>
D={d1,d2,d3}
F(CAT)={d2}
F(DOG)={d1,d3}
F(TOUCHES)={(d3,d2)}

Satisfaction
• Suppose we have this model:
 and assignment: g(x)=d1
 and this formula: CAT(x)

 Does this model satisfy this formula wrt g?

 M,g |= CAT(x) ?

 Only if g(x) is in F(CAT)

M=<D,F>
D={d1,d2,d3}
F(CAT)={d2}
F(DOG)={d1,d3}
F(TOUCHES)={(d3,d2)}

Logic should not be a lottery
•  There is clearly a cat in our model,

but the answer we get is false...
• We only get true if we pick out the right value for x
• But we don’t want to rely on luck!

Existential quantification
•  Logic has a well-known device to avoid being dependent

on luck:

 ∃

The existential quantifier is always connected to a
variable:

 If F is a formula, and x a variable,
 then ∃xF is a formula.

Giuseppe Peano
Italian mathematician,
founder of mathematical
logic (1858-1932)

source: en.wikipedia.org

Satisfaction again

• Suppose we have this model:
• And assignment: g(x)=d1
• And this formula: ∃xCAT(x)

 Does this model (let’s call it M) satisfy this formula wrt g?

 M,g |= ∃xCAT(x) ?

Only if M,g’ |= CAT(x), where g’ is a copy of g but changes
are allowed only with respect to x. E.g.: g’(x)=d2

M=<D,F>
D={d1,d2,d3}
F(CAT)={d2}
F(DOG)={d1,d3}
F(TOUCHES)={(d3,d2)}

Constructing complex formulas
• Suppose we’re given a model M and want to check

whether this model satisfies multiple descriptions
•  For instance, perhaps we want to check whether there is

a cat present and that it is white
• We could construct two basic formulas and form a

conjunction (using a new symbol ∧ and brackets):

 [CAT(x) ∧ WHITE(x)]

• We can now check whether M satisfies this formula.

Satisfaction again

• Suppose we have this model M:
• And assignment: g(x)=d1
• And this formula: [CAT(x)∧WHITE(x)]

 Does M satisfy this formula wrt g?

 M,g |= [CAT(x)∧WHITE(x)] ?

 Only if M,g |= CAT(x) and M,g |= WHITE(x)

M=<D,F>
D={d1,d2,d3}
F(CAT)={d2}
F(DOG)={d1,d3}
F(WHITE)={d2,d3}

Constructing negated formulas
• Suppose we’re given a model M and want to check

whether this model does not satisfy a certain description
•  For instance, perhaps we want to check that there is no

dog present, or that there are no sleeping cats around
• We can do this by introducing a negation: ¬

A negated formula is simply formed by putting ¬ in front

 ¬DOG(x)

A model satisfies a negated formula F iff it doesn’t satisfy F
 M,g |= ¬DOG(x) iff it is not the case that M,g|=DOG(x)

Ingredients of a first-order language
1.  All symbols in the vocabulary – the non-logical symbols

of the first-order language
2.  Enough variables (a countably infinite collection):

x, y, z, etc.
3.  The Boolean connectives ¬ (negation), ∧

(conjunction), ∨ (disjunction), and → (implication)
4.  The quantifiers ∀ (the universal quantifier) and ∃ (the

existential quantifier)
5.  Some punctuation symbols:

brackets and the comma.

George Boole
English mathematician,
pioneer of modern
mathematical logic
(1815-1864)

source: en.wikipedia.org

First-order terms
• Any constant or any variable is a first-order term
• Constants are sometimes called 0-place predicates
•  Terms are the “noun phrases” of first-order languages

•  constants are first-order analogs of proper names
•  variables are first-order analogs of pronouns

Atomic formulas
•  If R is a relation symbol of arity n, and t1,...,tn are terms,

then R(t1,....,tn) is an atomic formula
•  If t1 and t2 are terms, then t1 = t2 is an atomic formula

Well formed formulas (wffs)
1.  All atomic formulas are wffs
2.  If φ and ψ are wffs,

then so are ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ)
3.  If φ is a wff, and x is a variable,

then both ∃xφ and ∀xφ are wffs
[φ is the scope of the quantifier ∃/∀]

4.  Nothing else is a wff

Well formed formulas (wffs)
1.  All atomic formulas are wffs
2.  If φ and ψ are wffs,

then so are ¬φ, (φ∧ψ), (φ∨ψ), (φ→ψ)
3.  If φ is a wff, and x is a variable,

then both ∃xφ and ∀xφ are wffs
[φ is the scope of the quantifier ∃/∀]

4.  Nothing else is a wff

Free and Bound Variables
• An occurrence of a variable is free in a formula ψ if it is

not bound in ψ
• An occurrence of a variable x is bound in a formula ψ if it

appears in the scope of a quantifier ∃x or ∀x in ψ

Closed formulas
•  Formulas that have no free variables are called closed
• Usually we’re only interested in closed formulas
•  Translating a natural language sentence to first-order logic

should produce a closed formula
•  Free variables can be

thought of as “pronouns”

Logicians are only human
• Logicians (and mathematicians) are usually very
precise in their formulations

• However, they sometimes drop punctuation
symbols if no confusion arises

• Often outermost brackets are dropped; also other
brackets as long as no confusion arises

• Examples:
p ∧ q instead of (p ∧ q)
p ∨ (q ∧ r) instead of (p ∨ (q ∧ r))
(p ∨ q ∨ r) instead of (p ∨ (q ∨ r))

The satisfaction definition for FOL

Do we really need all this stuff?
•  implication
•  disjunction
•  quantifiers

A note on notation…

• Negation: ¬ or ∼
• Conjunction: ∧ or &
•  Implication: → or ⊃
• Equivalence: ↔ or ≡
• Brackets: (…) or […]

A note on naming…

First-order logic = predicate logic = classical/standard logic

What’s wrong with these translations?

English First-order logic
A dog barks. ∃x(dog(x) → bark(x))
Vincent likes every dog. ∀x(dog(x) ∧ like(vincent,x))
No dog barks. ∃x(dog(x) ∧ ¬bark(x))
Every dog chases a cat. ∀x(dog(x) → ∃y(cat(y) ∧ chase(y,x))

What’s wrong with these translations?

English First-order logic
A dog barks. ∃x(dog(x) ∧ bark(x))
Vincent likes every dog. ∀x(dog(x) → like(vincent,x))
No dog barks. ¬∃x(dog(x) ∧ bark(x))
Every dog chases a cat. ∀x(dog(x) → ∃y(cat(y) ∧ chase(x,y))

Model Checking

•  The task of the determining whether a given model
satisfies a formula (or a set of formulas) 

 Input: model + formula 
 Output: true or false

Model Checking

M=<D,F>
D={d1,d2,d3,d4}
F(mia)=d1
F(honey-bunny)=d2
F(vincent)=d3
F(yolanda)=d4
F(customer)={d1,d3}
F(robber)={d2,d4}
F(love)={(d4,d2),(d3,d1)}

Q1: Does M satisfy: ∃x(customer(x) ∧ ∃y(customer(y) ∧ love(x,y)))
Q2: Does M satisfy: ∃x(robber(x) ∧ love(x,x))

Model Checking (“amazing” demo)

1.  ~/grim % cat scripts/model_checker.pl | more
2.  scripts/_checkmodels "some(X,n_cat_1(X))”
3.  scripts/_checkmodels "some(X,n_cat_1(X))” > out.tex
4.  pdflatex out

Model Checking (“amazing” demo)

Nice examples (1):
 a cat and dog

 a cat and a dog
 a white cat and a dog

Nice examples (2):

 a bicycle
 a woman and a bicycle

 a woman on a bicycle

Combining Model Extraction & Model Checking

A man threw a bottle in the ocean.
A woman wrote a letter.
Someone dropped two bottles in the sea.
A man with a beard wrote something on a piece of paper.

Combining Model Extraction & Model Checking

A man threw a bottle in the ocean. ✓
A woman wrote a letter. ✗
Someone dropped two bottles in the sea. ✗
A man with a beard wrote something on a piece of paper. ✓

Different kinds of meaning representations
• Expressive power
•  FOL, DRS, AMR
• Syntax
• Semantics

What is a good meaning representation?
• All-purpose? Or tailored to specific application?

• Worry about inference efficiency?

• Readability for humans?

Controlling Inference

ex
pr

es
si

ve
 p

ow
er

higher-order logic

second-order logic

first-order logic (predicate logic)

description logics
modal logics

¬ ∧
 → v

Discourse

Representation

Structure

reasoning efficiency

propositional logic

∀x
 ∃x

λx λP

∀P ∃P

[] <>

Abstract
Meaning

Representation

Syntax of FOL (in Backus-Nauer Form, BNF)

F ::= Pn(t1…tn) |
 ¬F |
 (F∧F) |
 ∃x F

Short version

 F is a formula of first-order logic
 Pn is a n-place non-logical symbol
 t is a term (constant or variable)

Syntax of FOL (in Backus-Nauer Form, BNF)

F ::= Pn(t1…tn) |
 ¬F |
 (F∧F) | (F∨F) | (F→F) |
 ∃x F | ∀x F

Long version (with disjunction and universal quantifier)

 F is a formula of first-order logic
 Pn is a n-place non-logical symbol
 t is a term (constant or variable)

Syntax of FOL (in Backus-Nauer Form, BNF)

F ::= Pn(t1…tn) |
 ¬F | t=t |
 (F∧F) | (F∨F) | (F→F) |
 ∃x F | ∀x F

Long version with equality

 F is a formula of first-order logic
 Pn is a n-place non-logical symbol
 t is a term (constant or variable)

Back to yesterday’s events…

t1 t2 t3

kick(x,y) <=> abut(t1,t2) &
 abut(t2,t3) &
 near(t1,x,y) &
 touch(t2,x,y) &
 ¬near(t3,x,y)
Pre-Davidsonian
Analysis of an achievement event without explicit entities for events.
Problem: integration of event modifiers.

t1 t2 t3

kick(e,x,y)∧time(e,t2) <=> abut(t1,t2) &
 abut(t2,t3) &
 near(t1,x,y) &
 touch(t2,x,y) &
 ¬near(t3,x,y)
Davidsonian
Analysis of an achievement event with explicit entities for events.
Advantage: dealing with event modifiers (manner, temporal)
Disadvantage: number of arguments not always consistent

t1 t2 t3

kick(e)∧agent(e,x)∧patient(e,y)∧time(e,t2) <=> abut(t1,t2) &
 abut(t2,t3) &
 near(t1,x,y) &
 touch(t2,x,y) &
 ¬near(t3,x,y)
neo-Davidsonian
Analysis with explicit entities for events and explicit thematic roles.
Advantage: consistent number of argument for event symbols
Disadvantage: need an inventory of thematic roles

t1 t2 t3

kick(e,x,y,z) ∧time(e,t2) <=> abut(t1,t2) &
 abut(t2,t3) &
 near(t1,x,y) &
 touch(t2,x,y) &
 ¬near(t3,x,y)
Hobbsian
Analysis of all event with fixed number (4) of arguments.
Advantage: consistent number of arguments
Disadvantage: need dummy variables

Other meaning representations
•  First-order formula syntax not always handy
• Readability (brackets…)
• Dealing with pronouns in texts (rather than sentences)
• Donkey sentences (where the article “a” seems to

introduce a universal rather than an existential quantifier

•  This lead in the early 1980s do the development of
“dynamic” semantic theories such as DRT

Syntax of DRS (in Backus-Nauer Form, BNF)

B ::= [x1 … xn | C1 … Cm]
C ::= ¬B |
 B v	
 B |
 B => B |
 Pn(x1,…xn)

 B is a DRS (Discourse Representation Structure)
 C is a DRS-condition
 Pn is a n-place predicate symbol
 x is discourse referent (variable)

Comparing FOL with DRS syntax
Every student kicked a lecturer.

FOL: ∀x(student(x) →∃y(lecturer(y) ∧ kick(x,y)))
DRS: [| [x | student(x)]=>[y | lecturer(y),kick(x,y)]]

 =>

x
student(x)

y
lecturer(y)
kick(x,y)

Interpretation of DRS
• But wait a minute?

We don’t have a satisfaction definition for DRSs!

•  Two possibilities:
•  Translate DRS into FOL
•  Give a satisfaction definition for DRS

• Both are possible
(see Kamp & Reyle, Muskens, and many others)

x y e u v e’
Butch(x)
chopper(y)
stole(e)
agent(e,x)
theme(e,y)
u=y
garage(v)
parked(e’)
theme(e’,u)
location(e’,v)

neo-Davidsonian x y u v
Butch(x)
chopper(y)
stole(x,y)
u=y
garage(v)
parked-in(u,v)

Butch stole a chopper.
It was parked in a garage. x y e u v e’

Butch(x)
chopper(y)
stole(e,x,y)
u=y
garage(v)
parked(e’,u)
in(e’,v)

Davidsonian

no events

x y e u v e’ a b c d
Butch(x)
chopper(y)
stole(e,x,a,b)
agent(e,x)
u=y
garage(v)
parked(e’,u,c,d)
in(e’,v)

Hobbsian

Abstract Meaning Representations
• Simple meaning representations without explicit scope

and quantifiers
• Relatively easy to edit by human beings

Syntax of AMR (in Backus-Nauer Form, BNF)

A ::= c |
 x |
 (x / P1) |
 (x/P1 :P2A … :P2A)

 A is an AMR (Abstract Meaning Representation)
 Pn is a n-place predicate symbol
 x is a variable
 c is a constant

“Johan wants money.” AMR
(e / want
 :ARGO (x / johan)
 :ARG1 (y / money))

Comparing AMR to DRS

“Johan wants money.” DRS

x y e
johan(x)
money(y)
want(e)
Agent(e,x)
Theme(e,y)

“Johan wants money.” DRS

x y e
want(e)
johan(x)
money(y)
Agent(e,x)
Theme(e,y)

“Johan wants money.” DRS

x y e
want(e)
money(y)
Agent(e,x)
johan(x)
Theme(e,y)

“Johan wants money.” DRS

x y e
want(e)
Agent(e,x)
johan(x)
Theme(e,y)
money(y)

“Johan wants money.” DRS

x y e
want(e)
 Agent(e,x)
 johan(x)
 Theme(e,y)
 money(y)

“Johan wants money.” DRS

x y e
want(e)
 :ARG0(e,x)
 johan(x)
 :ARG1(e,y)
 money(y)

“Johan wants money.” DRS

x y e
(e / want
 :ARG0(e,x)
 (x / johan)
 :ARG1(e,y)
 (y / money))

“Johan wants money.”

(e / want
 :ARG0(e,x)
 (x / johan)
 :ARG1(e,y)
 (y / money))

“Johan wants money.” AMR

(e / want
 :ARG0 (x / johan)
 :ARG1 (y / money))

“Johan wants money.” AMR
(e / want
 :ARGO (x / johan)
 :ARG1 (y / money))

JOHAN wants money.
(x / johan
 :ARGO-of (e / want
 :ARG1 (y / money)))

Johan wants MONEY.
(y / money
 :ARG1-of (e / want
 :ARG0 (x / johan)))

Every student kicked a lecturer
(x / student :polarity –
 :ARG0-of (e / kick :polarity -
 :ARG1 (y / lecturer)))

An observation about AMR
AMRs without recurring variables are part of
the 2-variable fragment of First-Order Logic

It was a picture of a boa constrictor in the
act of swallowing an animal.
(p / picture
 :domain (i / it)
 :topic (b2 / boa
 :mod (c2 / constrictor)
 :ARG0-of (s / swallow-01
 :ARG1 (a /
animal))))

∃x(picture(x) &
 ∃y(it(y) & domain(x,y)) &
 ∃y(boa(y) & topic(x,y) &
 ∃x(constrictor(x) & mod(y,x)) &
 ∃x(swallow-01(x) & ARG0(x,y) &
 ∃y(animal(y) & ARG1(x,y)))))

Proper names
“Mia is happy.”

 happy(mia)

Proper names
“Mia is happy.”

 happy(mia)
 ∃x(x=mia ∧ happy(x))

Proper names
“Mia is happy.”

 happy(mia)
 ∃x(x=mia ∧ happy(x))
 ∃x(person(x) ∧ named(x,mia) ∧ happy(x))

Proper names
“Mia is happy.”

 happy(mia)
 ∃x(x=mia ∧ happy(x))
 ∃x(person(x) ∧ named(x,mia) ∧ happy(x))
 ∃x∃y(person(x)∧has(x,y)∧name(y)∧y=mia∧happy(x))

Proper names
“Mia is happy.”

 happy(mia)
 ∃x(x=mia ∧ happy(x))
 ∃x(person(x) ∧ named(x,mia) ∧ happy(x))
 ∃x∃y(person(x)∧has(x,y)∧name(y)∧y=mia∧happy(x))
 ∃x(mia(x) ∧ happy(x))

FOL, DRS, AMR
• All first-order representations of meaning
• But with different properties

•  Logical aspects (negation, quantification)
•  Human readability
•  Information structure

The Big Picture

Semantic
Parsing

Semantic
Parsing

Model
Extraction

Model
Checking

meaning

model

natural
language
statement

TRUE
or

FALSE

YESTERDAY

WEDNESDAY

