COMPUTATIONAL
SEMANTICS: DAY 2

Johan Bos

University of Groningen
www.rug.nl/staff/johan.bos

Computational Semantics

Day 1: Exploring Models

Day 2: Meaning Representations
Day 3: Computing Meanings

Day 4: Drawing Inferences

Day 5. Meaning Banking

Questions after yesterday’s lecture

- Inferring from observations (“flying bird”)
- (Too?) detailed lexical semantics for verbs

- Small (?) dataset of image models in GRIM
- Adding probabilities
- What are the “zero-place” symbols?

" natural
language

statemen:%

R

Semanu¥
Parsing

Model
Extraction

meaning

model

Constructing basic formulas

- Suppose we're given a model M and want to check
whether this model satisfies certain descriptions

- For instance, perhaps we N

want to check whether there w)
: — e
IS a cat present §

Constructing basic formulas

- Suppose we're given a model M and want to check
whether this model satisfies certain descriptions

- For instance, perhaps we
want to check whether there 1 c 3
I \ ’k\"(
IS a cat present .

- We could construct a formula by applying the one-place
non-logical symbol CAT to a variable, say x:

CAT(x)

Constructing basic formulas

- Suppose we're given a model M and want to check
whether this model satisfies certain descriptions

- For instance, perhaps we
want to check whether there 1 c 3
I \ ’k\"(
IS a cat present .

- We could construct a formula by applying the one-place
non-logical symbol CAT to a variable, say x:

CAT(x)

- We can now check whether M satisfies this formula, but
we need the help of an assignment function

Variable assignment function

- An assignment function maps all variables in a formula to
an entity in the model’s domain

- Usually a lowercase letter g is used to denote an
assignment function

Variable assignment function

- An assignment function maps all variables in a formula to
an entity in the model’s domain

- Usually a lowercase letter g is used to denote an
assignment function

- For instance, for two variables x and y and a domain with
three entities d1, d2, and d3, the following assignment
functions are possible:

* g4(x)=d1, g4(y)=d1

* Go(x)=d1, gy(y)=d2

* ga(x)=d1, gs(y)=d3
(

* 94(X)=d2, g,(y)=d1,
etc.

Satisfaction

- Suppose we have this model: D={d1,d2,d3}
. _ ~ : F(CAT)={d2}
and assignment: g(x)=d1 : F(DOG)={d1,d3}

and this formula: CAT(x) | F(TOUCHES)={(d3,d2)} :

Does this model satisfy this formula wrt g7

M,g |= CAT(x) ?

Satisfaction

- Suppose we have this model: D={d1,d2,d3}
: _ _ : F(CAT)={d2}
and assignment: g(x)=d1 : F(DOG)={d1,d3}

and this formula: CAT(x) | F(TOUCHES)={(d3,d2)} :

Does this model satisfy this formula wrt g7
M,g |= CAT(x) ?

Only if g(x) is in F(CAT)) (

B
Logic should not be a lottery

- There is clearly a cat in our model,
but the answer we get is false...

- We only get true if we pick out the right value for x

- But we don’t want to rely on luck!

Existential quantification

- Logic has a well-known device to avoid being dependent
on luck:

=

The existential quantifier is always connected to a
variable:

If F is a formula, and x a variable,
then IAxF is a formula.

Giuseppe Peano

ltalian mathematician,
founder of mathematical
logic (1858-1932)

source: en.wikipedia.org

Satisfaction again

: M=<D,F>
- Suppose we have this model: :D={d1,d2,d3}
. i F(CAT)={d2
- And assignment: g(x)=d1 EFEDOG)) {{d1} d3) :
- And this formula: 3xCAT(x) : F(TOUCHES)={(d3,d2)}

Does this model (let’s call it M) satisfy this formula wrt g7
M,g |= AXCAT(x) ?

Only if M,g’ |= CAT(x), where g’ is a copy of g but changes
are allowed only with respect to x. E.g.: g'(x)=d2

Constructing complex formulas

- Suppose we're given a model M and want to check
whether this model satisfies multiple descriptions

- For instance, perhaps we want to check whether there is
a cat present and that it is white

- We could construct two basic formulas and form a
conjunction (using a new symbol A and brackets):

[CAT(x) A WHITE(x)]

- We can now check whether M satisfies this formula.

Satisfaction again . M=<DF>
: D={d1,d2,d3}

: F(CAT)={d2}
: F(DOG)={d1,d3}
- Suppose we have this model M: : F(WHITE)={d2,d3}

- And assignment: g(x)=d1
- And this formula: [CAT(X)AWHITE(x)]

Does M satisfy this formula wrt g?
M,g |[= [CAT(X)AWHITE(x)] ?

Only if M,g |= CAT(x) and M,g |= WHITE(x)

Constructing negated formulas

Suppose we're given a model M and want to check
whether this model does not satisfy a certain description

For instance, perhaps we want to check that there is no
dog present, or that there are no sleeping cats around

We can do this by introducing a negation: =
A negated formula is simply formed by putting = in front

~DOG(x)

A model satisfies a negated formula F iff it doesn'’t satisfy F
M,g |= "DOG(x) iff it is not the case that M,g|=DOG(x)

Ingredients of a first-order language

1.

All symbols in the vocabulary — the non-logical symbols
of the first-order language

Enough variables (a countably infinite collection):

X, Y, z, efc.

The Boolean connectives - (negation), A
(conjunction), v (disjunction), and — (implication)

The quantifiers V (the universal quantifier) and 3 (the
existential quantifier)

Some punctuation symbols:
brackets and the comma.

George Boole

English mathematician,
pioneer of modern
mathematical logic

(1815-1864)

source: en.wikipedia.org

First-order terms

- Any constant or any variable is a first-order term
- Constants are sometimes called O0-place predicates

- Terms are the “noun phrases” of first-order languages
- constants are first-order analogs of proper names
- variables are first-order analogs of pronouns

Atomic formulas

- If R is a relation symbol of arity n, and t,,...,t_ are terms,
then R(t,,....,t) is an atomic formula

- If t, and t, are terms, then t, = t, is an atomic formula

Well formed formulas (wffs)

1. All atomic formulas are wffs

2. If @ and p are wffs,

then so are -, (PAY), (vY), (¢—Y)
3. If @ is a wff, and x is a variable,
then both dx¢ and Vxo are wffs

4. Nothing else is a wif

Well formed formulas (wffs)

1. All atomic formulas are wffs

2. If @ and p are wffs,

then so are -, (pAy), (Pvy), (¢—Y)
3. If @ is a wff, and x is a variable,

then both dx¢ and Vxo are wffs

[¢ Is the scope of the quantifier 4/V]

4. Nothing else is a wif

Free and Bound Variables

- An occurrence of a variable is free in a formula g if it is
not bound in

- An occurrence of a variable x is bound in a formula y if it
appears in the scope of a quantifier Ix or Vx in g

Closed formulas

Formulas that have no free variables are called closed
Usually we're only interested in closed formulas

Translating a natural language sentence to first-order logic
should produce a closed formula

Free variables can be
thought of as “pronouns”

Logicians are only human

Logicians (and mathematicians) are usually very
precise in their formulations

However, they sometimes drop punctuation
symbols if no confusion arises

Often outermost brackets are dropped; also other
brackets as long as no confusion arises

Examples:

D ACQ instead of (p A Q)
pv(gar) insteadof (pv (qar))
(pvagvr) insteadof (pv (qvr))

The satisfaction definition for FOL

Mg R(ri, -, m) iff (IH(7),-, T4(r) € F(R),
M,gEmn=m iff 13(m) = I(7),

M, g E —¢ iff not M, g |= o,

M,g = (o ANY) iff M,gFE ¢ and M,g =,

M,g k= (o V) iff M,gE=¢ or M,gl=1,

M.g = (¢ =) iff notM,g ¢ or M,g =1,

M, g = 3xo iff M,q = ¢, for some x-variant ¢’ of g,
M, g |= Vxo iff M,q" = ¢, forall x-variants ¢’ of g.

(1) is F(c) if the term 7 is a constant c, and g(x) if T is a variable x.

Do we really need all this stuff?

- Implication
- disjunction
- quantifiers

A note on notation...

- Negation: - or ~
- Conjunction: A or &
- Implication: — or D

- Equivalence: < or
- Brackets: (...)or [...]

A note on naming...

First-order logic = predicate logic = classical/standard logic

What's wrong with these translations?

English First-order logic
A dog barks. dx(dog(x) — bark(x))

Vincent likes every dog. Vx(dog(x) A like(vincent,x))
No dog barks. dx(dog(x) A ~bark(x))
Every dog chases a cat. Vx(dog(x) — dy(cat(y) A chase(y,x))

What's wrong with these translations?

English First-order logic
A dog barks. dx(dog(x) A bark(x))

Vincent likes every dog. Vx(dog(x) — like(vincent,x))
No dog barks. dx(dog(x) A bark(x))
Every dog chases a cat. Vx(dog(x) — dy(cat(y) A chase(x,y))

Model Checking

- The task of the determining whether a given model
satisfies a formula (or a set of formulas)

Input: model + formula
Output: true or false

Model Checking

: M=<D,F>
D={d1,d2,d3,d4}

: F(mia)=d1

: F(honey-bunny)=d2

: F(vincent)=d3

: F(yolanda)=d4

: F(customer)={d1,d3}

: F(robber)={d2,d4}

: F(love)={(d4,d2),(d3,d1)}

Q1: Does M satisfy: Ix(customer(x) A dy(customer(y) A love(x,y)))
Q2: Does M satisfy: dx(robber(x) A love(x,x))

Model Checking ("amazing” demo)

~/grim % cat scripts/model_checker.pl | more
scripts/_checkmodels "some(X,n_cat_1(X))"
scripts/_checkmodels "some(X,n_cat_1(X))” > out.tex
pdflatex out

s W=

Model Checking ("amazing” demo)

Nice examples (1):
a cat and dog
a cat and a dog
a white cat and a dog

Nice examples (2):
a bicycle
a woman and a bicycle
a woman on a bicycle

Combining Model Extraction & Model Checking

A man threw a bottle in the ocean.

A woman wrote a letter.

Someone dropped two bottles in the sea.

A man with a beard wrote something on a piece of paper.

Combining Model Extraction & Model Checking

A man threw a bottle in the ocean. v

A woman wrote a letter. X

Someone dropped two bottles in the sea. X

A man with a beard wrote something on a piece of paper. v

Different kinds of meaning representations

- Expressive power
- FOL, DRS, AMR
- Syntax

- Semantics

What is a good meaning representation?

- All-purpose? Or tailored to specific application?

- Worry about inference efficiency?

- Readability for humans?

Controlling Inference

Aouvioiye buiuosea.

<

expressive power

M AP higher-order logic

;X first-order logic (predicate logic)

Discourse Abstra
g n Ct
R wucture aning

modal logics
description logics

— v propositional logic

e
Syntax of FOL (in Backus-Nauer Form, BNF)

Fo=P.(t...1) |
-F |
(FAF) |
dx F

Short version

F is a formula of first-order logic

P, is a n-place non-logical symbol
t is a term (constant or variable)

e
Syntax of FOL (in Backus-Nauer Form, BNF)

Fo=P.(t...1) |
—|F|
(FAF) [(FVF) [(F—=F)|
dxF | VxF

Long version (with disjunction and universal quantifier)

F is a formula of first-order logic

P, is a n-place non-logical symbol
t is a term (constant or variable)

e
Syntax of FOL (in Backus-Nauer Form, BNF)

Fo=P.(t...1) |
aF | t=t]
(FAF) | (FVF) | (F—F)]
dxF | VxF

Long version with equality

F is a formula of first-order logic

P, is a n-place non-logical symbol
t is a term (constant or variable)

Back to yesterday’s events...

kICk(X y) <=> abut(t1,t2) &

: abut(t2,t3) &
near(t1,x,y) &
touch(t2,x,y) &
“near(t3,x,y)

Pre-Davidsonian
Analysis of an achievement event without explicit entities for events.
Problem: integration of event modifiers.

klck(e X,y)Atime(e,t2) <=> abut(t1,t2) &
abut(t2,t3) &
near(t1,x,y) &
touch(t2,x,y) &
“near(t3,x,y)

Davidsonian
Analysis of an achievement event with explicit entities for events.

Advantage: dealing with event modifiers (manner, temporal)
Disadvantage: number of arguments not always consistent

: kick(e) Aagent(e,x) A patient(e,y) Atime(e,t2) <=> abut(t1,t2) &
. abut(2,t3) &

near(t1,x,y) & :
touch(t2,x,y) & :
“near(t3,x,y)

neo-Davidsonian
Analysis with explicit entities for events and explicit thematic roles.

Advantage: consistent number of argument for event symbols
Disadvantage: need an inventory of thematic roles

: kick(e,x,y,z) Atime(e,t2) <=> abut(t1,t2) &

: abut(t2,t3) &
near(t1,x,y) &
touch(t2,x,y) &
“near(t3,x,y)

Hobbsian
Analysis of all event with fixed number (4) of arguments.

Advantage: consistent number of arguments
Disadvantage: need dummy variables

Other meaning representations

- First-order formula syntax not always handy
- Readability (brackets...)
- Dealing with pronouns in texts (rather than sentences)

([P}

- Donkey sentences (where the article “a” seems to
introduce a universal rather than an existential quantifier

- This lead in the early 1980s do the development of
“dynamic” semantic theories such as DRT

Syntax of DRS (in Backus-Nauer Form, BNF)

B: =[1' X|C1' m]
C:="B|
B v B|
B=>B|
P.(Xq,...X,)

B is a DRS (Discourse Representation Structure)
C is a DRS-condition

P, is a n-place predicate symbol
X is discourse referent (variable)

B
Comparing FOL with DRS syntax

Every student kicked a lecturer.

FOL: Vx(student(x) —3y(lecturer(y) A kick(x,y)))
DRS: [| [x | student(x)]=>[y | lecturer(y),kick(x,y)]]

X y
student(x) lecturer(y)
kick(x,y)

L
Interpretation of DRS

- But wait a minute?
We don’t have a satisfaction definition for DRSs!

- Two possibilities:
- Translate DRS into FOL
- Give a satisfaction definition for DRS

- Both are possible
(see Kamp & Reyle, Muskens, and many others)

Butch stole a chopper.
It was parked in a garage.

no events

Xyuv

Butch(x)

chopper(y)
stole(x,y)

u=y
garage(v)
parked-in(u,v)

—»

Davidsonian

Xyeuve’

Butch(x)
chopper(y)
stole(e,x,y)
u=y
garage(V)
parked(e’,u)
in(e’,v)

‘ Hobbsian

—

xyeuveabcd

Butch(x)
chopper(y)
stole(e,x,a,b)
agent(e,x)

u=y

garage(V)
parked(e’,u,c,d)
in(e’,v)

neo-Davidsonian

Xyeuve’

Butch(x)
chopper(y)
stole(e)
agent(e,x)
theme(e,y)
u=y
garage(v)
parked(e’)
theme(e’,u)
location(e’,v)

Abstract Meaning Representations

- Simple meaning representations without explicit scope
and quantifiers

- Relatively easy to edit by human beings

B
Syntax of AMR (in Backus-Nauer Form, BNF)

A= c|
X |
(x/Pq) |
(X/IP; :P,A ... :P,A)

Ais an AMR (Abstract Meaning Representation)
P, is a n-place predicate symbol

X IS a variable
Cc IS a constant

“Johan wants money.” AMR

(e / want
:ARGO (x / johan)
:ARGl1 (y / money))

B
Comparing AMR to DRS

“Johan wants money.” DRS

Xye

johan(x)
money(y)
want(e)
Agent(e,x)
Theme(e,y)

“Johan wants money.” DRS

Xye

want(e)
johan(x)
money(y)
Agent(e,x)
Theme(e,y)

“Johan wants money.” DRS

Xye

want(e)
money(y)
Agent(e,x)
johan(x)
Theme(e,y)

“Johan wants money.” DRS

Xye

want(e)
Agent(e,x)
johan(x)
Theme(e,y)
money(y)

“Johan wants money.” DRS

Xye

want(e)
Agent(e,x)
johan(x)
Theme(e,y)
money(y)

“Johan wants money.” DRS

Xye

want(e)
:ARGO(e,x)
johan(x)
‘ARG1(e,y)
money(y)

“Johan wants money.” DRS

Xye

(e / want
:ARGO(e,x)
(x / johan)
‘ARG1(e,y)
(y / money))

“Johan wants money.”

(e / want
:ARGO(e,x)
(x / johan)
‘ARG1(e,y)
(y / money))

“Johan wants money.” AMR

(e / want
:ARGO (x / johan)
:ARG1 (y / money))

“Johan wants money.” AMR

(e / want
:ARGO (x / johan)
:ARGl1 (y / money))

D
JOHAN wants money.

(x / johan
:ARGO-of (e / want
:ARG1 (y / money)))

D
Johan wants MONEY.

(v / money
:ARGl-of (e / want
:ARGO (x / johan)))

Every student kicked a lecturer

(x / student :polarity —
:ARGO-of (e / kick :polarity -
:ARG1l (y / lecturer)))

D
An observation about AMR

AMRs without recurring variables are part of
the 2-variable fragment of First-Order Logic

It was a picture of a boa constrictor in the

act of swallowing an animal.

(p / picture
:domain (i / it)
:topic (b2 / boa
:mod (c2 / constrictor)
:ARGO-0of (s / swallow-01

:ARG1 (a /
animal))))

dx(picture(x) &
dy(it(y) & domain(x,y)) &
dy(boa(y) & topic(x,y) &
dx(constrictor(x) & mod(y,x)) &
dx(swallow-01(x) & ARGO(x,y) &
dy(animal(y) & ARG1(x,y)))))

Proper names

“Mia is happy.”

happy(mia)

Proper names

“Mia is happy.”

happy(mia)
Ax(x=mia A happy(x))

Proper names

“Mia is happy.”

happy(mia)
dx(x=mia A happy(x))
dx(person(x) A named(x,mia) A happy(x))

Proper names

“Mia is happy.”

happy(mia)

dx(x=mia A happy(x))

dx(person(x) A named(x,mia) A happy(x))
dx3dy(person(x) Ahas(x,y) Aname(y) Ay=mia A happy(x))

Proper names

“Mia is happy.”

happy(mia)

dx(x=mia A happy(x))

dx(person(x) A named(x,mia) A happy(x))
dx3dy(person(x) A has(x,y) Aname(y) Ay=mia A happy(x))

dx(mia(x) A happy(x))

B
FOL, DRS, AMR

- All first-order representations of meaning
- But with different properties

- Logical aspects (negation, quantification)

- Human readability

- Information structure

" natural
language

statemen:%

2 o
(—-

Semanuv
Parsing

Model
Extraction

meaning

model

