
Algebraic specification and verification with
CafeOBJ

Part 5 – Proving and CITP

Norbert Preining

ESSLLI 2016 Bozen, August 2016

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 1/28

Lab time

The rank of a polynomial

𝑝 =
𝑛

∑
𝑘=0

𝑝𝑘𝑋𝑘

is the maximum of the exponents of non-zero terms, i.e.,

rank(𝑝) = max{𝑘 ∶ 𝑝𝑘 ≠ 0}

Assuming the specification of polynomials from the lecture given.
Define an operator and necessary equations so that CafeOBJ can
compute arbitrary ranks.
Example: In case in integer polynomials:

red rank (3 *p X^ 2 +p X^ 1 -p 4) .

should return 2 because 𝑝2 = 3 is the biggest non-zero coefficient.

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 2/28

Lab time II

A vector space 𝑉 over a commutative ring 𝑅 is a set with two
operations, vector addition and scalar multiplication. The elements
of 𝑉 are called vectors, the elements of 𝑅 (the field) scalars. The
vector addition operators on two vectors, and the scalar
multiplication operates on a scalar and a vector. The operations
satisfy the following axioms:

vector addition is associative and commutative
there is an identity element for the vector addition
for every vector there is the additive inverse for the vector
addition
scalar multiplication and field multiplication are compatible (𝑎
and 𝑏 are scalars, 𝑣⃗ a vector): 𝑎(𝑏𝑣⃗) = (𝑎𝑏)𝑣⃗
the identity element of the field is multiplicative identity of the
scalar multiplication
scalar multiplication is distributive with respect to both scalar
addition (addition in the field) and vector addition, that is,
(𝑎 + 𝑏)𝑣⃗ = (𝑎𝑣⃗) + (𝑏𝑣⃗) and 𝑎(𝑣⃗ + 𝑤⃗) = (𝑎𝑣⃗) + (𝑎𝑤⃗) where 𝑎
and 𝑏 are scalars, and 𝑣⃗ and 𝑤⃗ are vectors.

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 3/28

Lab time II cont

Give a parametrized (parameter is the commutative ring)
specification of vector spaces.
Example: With the view INT-AS-CRING from the lecture, the
following code

open VECTORSPACE(SCALAR <= INT-AS-CRING) .
red (3 * 2 * (4 + 3) *v (V:Vector +v W:Vector)) .

should give

((42 *v V) +v (42 *v W)):Vector

as output.

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 4/28

Proving

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 5/28

Proof scores

proofs of properties by reducing them to true (e.g.)
usually written between open and close
statements between the two are temporary and are lost after the
close (temporary module)
usually several modules plus several blocks of open-close

Examples
𝑥+ (−𝑥) = 0 in group theory
Associativity of + in PNAT

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 6/28

Proof scores

proofs of properties by reducing them to true (e.g.)
usually written between open and close
statements between the two are temporary and are lost after the
close (temporary module)
usually several modules plus several blocks of open-close

Examples
𝑥+ (−𝑥) = 0 in group theory
Associativity of + in PNAT

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 6/28

Group theory

group-theory1.cafe
mod* GROUP {
[G]
op 0 : -> G .
op _+_ : G G -> G { assoc } .
op -_ : G -> G .
var X : G .
eq[0left] : 0 + X = X .
eq[neginv] : (- X) + X = 0 .

}
open GROUP .
op a : -> G .
red a + (- a) .

close

…would be nice – but does not work

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 7/28

Group theory

group-theory1.cafe
mod* GROUP {
[G]
op 0 : -> G .
op _+_ : G G -> G { assoc } .
op -_ : G -> G .
var X : G .
eq[0left] : 0 + X = X .
eq[neginv] : (- X) + X = 0 .

}
open GROUP .
op a : -> G .
red a + (- a) .

close

…would be nice – but does not work

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 7/28

Group theory cont.
Why?

Let us try to give a proof – can you do it? Assume we have

0 + 𝑎 = 𝑎 (1)
−𝑎+𝑎 = 0 (2)

𝑎+−𝑎 = 0+𝑎+−𝑎 by (1) right-to-left
= −−𝑎+−𝑎+𝑎+−𝑎 by (2) right-to-left
= −−𝑎+ 0+−𝑎 by (2)
= −−𝑎+−𝑎 by (1)
= 0 by (2)

Why did it not work in CafeOBJ?

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 8/28

Group theory cont.
Why? Let us try to give a proof – can you do it?

Assume we have

0 + 𝑎 = 𝑎 (1)
−𝑎+𝑎 = 0 (2)

𝑎+−𝑎 = 0+𝑎+−𝑎 by (1) right-to-left
= −−𝑎+−𝑎+𝑎+−𝑎 by (2) right-to-left
= −−𝑎+ 0+−𝑎 by (2)
= −−𝑎+−𝑎 by (1)
= 0 by (2)

Why did it not work in CafeOBJ?

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 8/28

Group theory cont.
Why? Let us try to give a proof – can you do it? Assume we have

0 + 𝑎 = 𝑎 (1)
−𝑎+𝑎 = 0 (2)

𝑎+−𝑎 = 0+𝑎+−𝑎 by (1) right-to-left
= −−𝑎+−𝑎+𝑎+−𝑎 by (2) right-to-left
= −−𝑎+ 0+−𝑎 by (2)
= −−𝑎+−𝑎 by (1)
= 0 by (2)

Why did it not work in CafeOBJ?

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 8/28

Group theory cont.
Why? Let us try to give a proof – can you do it? Assume we have

0 + 𝑎 = 𝑎 (1)
−𝑎+𝑎 = 0 (2)

𝑎+−𝑎 = 0+𝑎+−𝑎 by (1) right-to-left
= −−𝑎+−𝑎+𝑎+−𝑎 by (2) right-to-left
= −−𝑎+ 0+−𝑎 by (2)
= −−𝑎+−𝑎 by (1)
= 0 by (2)

Why did it not work in CafeOBJ?

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 8/28

Group theory – better proof score

group-theory2.cafe
open GROUP .
op a : -> G .
start a + (- a) .
apply -.0left at (0) .
apply -.neginv with X = - a at [1] .
apply reduce at term .

close

Still not there – why?

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 9/28

Group theory – better proof score

group-theory2.cafe
open GROUP .
op a : -> G .
start a + (- a) .
apply -.0left at (0) .
apply -.neginv with X = - a at [1] .
apply reduce at term .

close

Still not there – why?

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 9/28

Group theory – even better proof score

group-theory3.cafe
open GROUP .
op a : -> G .
start a + (- a) .
apply -.0left at (1) .
apply -.neginv with X = - a at [1] .
apply +.neginv with X = a at [2 .. 3] .
apply reduce at term .

close

Where can we go from here?
Prove that 0 is also right inverse

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 10/28

Group theory – even better proof score

group-theory3.cafe
open GROUP .
op a : -> G .
start a + (- a) .
apply -.0left at (1) .
apply -.neginv with X = - a at [1] .
apply +.neginv with X = a at [2 .. 3] .
apply reduce at term .

close

Where can we go from here?

Prove that 0 is also right inverse

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 10/28

Group theory – even better proof score

group-theory3.cafe
open GROUP .
op a : -> G .
start a + (- a) .
apply -.0left at (1) .
apply -.neginv with X = - a at [1] .
apply +.neginv with X = a at [2 .. 3] .
apply reduce at term .

close

Where can we go from here?
Prove that 0 is also right inverse

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 10/28

0 is right inverse

group-theory4.cafe
open GROUP .
op a : -> G .
-- we have proven the following equation
-- so we can add it
eq[invneg] : a + (- a) = 0 .
start a + 0 .
apply -.neginv with X = a at (2) .
apply +.invneg at [1 .. 2] .
apply reduce at term .
-- and we get a, so (a + 0) = a

close

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 11/28

Associativity of + in PNAT

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 12/28

Associativity of +

Recall PNAT
mod! PNAT {
[Nat]
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat .
vars X Y : Nat
eq 0 + Y = Y .
eq s(X) + Y = s(X + Y) .

}

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 13/28

Mathematical proof

Assume that 0 +𝑦 = 𝑦 and 𝑠(𝑥) +𝑦 = 𝑠(𝑥+𝑦) for all 𝑥 and 𝑦.
How do we show that (𝑥 +𝑦)+ 𝑧 = 𝑥+ (𝑦+𝑦) for all 𝑥, 𝑦, and 𝑧?

Proof by induction:

Induction base
Show that (0 +𝑦)+ 𝑧 = 0+ (𝑦+ 𝑧)

Induction step
Show that if (𝑥 +𝑦)+ 𝑧 = 𝑥+ (𝑦+ 𝑧), then also
(𝑠(𝑥) +𝑦)+ 𝑧 = 𝑠(𝑥) + (𝑦+ 𝑧).

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 14/28

Mathematical proof

Assume that 0 +𝑦 = 𝑦 and 𝑠(𝑥) +𝑦 = 𝑠(𝑥+𝑦) for all 𝑥 and 𝑦.
How do we show that (𝑥 +𝑦)+ 𝑧 = 𝑥+ (𝑦+𝑦) for all 𝑥, 𝑦, and 𝑧?
Proof by induction:

Induction base
Show that (0 +𝑦)+ 𝑧 = 0+ (𝑦+ 𝑧)

Induction step
Show that if (𝑥 +𝑦)+ 𝑧 = 𝑥+ (𝑦+ 𝑧), then also
(𝑠(𝑥) +𝑦)+ 𝑧 = 𝑠(𝑥) + (𝑦+ 𝑧).

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 14/28

Mathematical proof

Assume that 0 +𝑦 = 𝑦 and 𝑠(𝑥) +𝑦 = 𝑠(𝑥+𝑦) for all 𝑥 and 𝑦.
How do we show that (𝑥 +𝑦)+ 𝑧 = 𝑥+ (𝑦+𝑦) for all 𝑥, 𝑦, and 𝑧?
Proof by induction:

Induction base
Show that (0 +𝑦)+ 𝑧 = 0+ (𝑦+ 𝑧)

Induction step
Show that if (𝑥 +𝑦)+ 𝑧 = 𝑥+ (𝑦+ 𝑧), then also
(𝑠(𝑥) +𝑦)+ 𝑧 = 𝑠(𝑥) + (𝑦+ 𝑧).

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 14/28

Formal proof in CafeOBJ

mod ADD-ASSOC {
pr(PNAT)
-- theorem of constants, denote arbitrary values
ops x y z : -> Nat .
op addassoc : Nat Nat Nat -> Bool .
vars X Y Z : Nat
eq addassoc(X,Y,Z) = ((X + Y) + Z == X + (Y + Z)) .

}

Induction base
open ADD-ASSOC .
red addassoc(0,y,z) .

close

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 15/28

Formal proof in CafeOBJ

mod ADD-ASSOC {
pr(PNAT)
-- theorem of constants, denote arbitrary values
ops x y z : -> Nat .
op addassoc : Nat Nat Nat -> Bool .
vars X Y Z : Nat
eq addassoc(X,Y,Z) = ((X + Y) + Z == X + (Y + Z)) .

}

Induction base
open ADD-ASSOC .
red addassoc(0,y,z) .

close

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 15/28

Checking induction base

CafeOBJ> set trace whole on
CafeOBJ> open ADD-ASSOC .
%ADD-ASSOC> red addassoc(0,y,z) .
-- reduce in %ADD-ASSOC : (addassoc(0,y,z)):Bool
[1]: (addassoc(0,y,z)):Bool
---> (((0 + y) + z) == (0 + (y + z))):Bool
[2]: (((0 + y) + z) == (0 + (y + z))):Bool
---> ((y + z) == (0 + (y + z))):Bool
[3]: ((y + z) == (0 + (y + z))):Bool
---> ((y + z) == (y + z)):Bool
[4]: ((y + z) == (y + z)):Bool
---> (true):Bool
(true):Bool
(0.000 sec for parse, 4 rewrites(0.000 sec), 12 matches)
%ADD-ASSOC> close
CafeOBJ>

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 16/28

Checking induction step

CafeOBJ> set trace whole off
CafeOBJ> open ADD-ASSOC .
%ADD-ASSOC> red addassoc(x,y,z) implies

addassoc(s(x),y,z) .
-- reduce in %ADD-ASSOC : (addassoc(x,y,z) implies addassoc(s

(x),y,z)):Bool
(true):Bool
(0.000 sec for parse, 11 rewrites(0.000 sec), 50 matches)
%ADD-ASSOC> close
CafeOBJ>

End of the proof

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 17/28

Automated Theorem Prover – CITP

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 18/28

CITP in CafeOBJ

(semi-)automated theorem prover based on induction

original version for Maude by Daniel Gaina and Min Zhang

ported to CafeOBJ by Toshimi Sawada

manual available in Japanese (but outdated)

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 19/28

Basic steps with CITP

define the goal to be proven

apply tactics, either manually or automatically

aim is to discharge all generated sub-goals

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 20/28

n

…n-2n-1

…n-2-1…n-1-1

…n-2-1-1…n-1-1-1

T1

T2

T3

:apply (T1 T2 T3 …)

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 21/28

Commutativity of Peano addition

Define Peano natural numbers
mod! PNAT {
[PZero PNzNat < PNat]
op 0 : -> PZero {ctor} .
op s_ : PNat -> PNzNat {ctor} .
op _+_ : PNat PNat -> PNat .
eq 0 + N:PNat = N .
eq s M:PNat + N:PNat = s(M + N) .

}

Then select/open the theory/module and specify the goals:
open PNAT .
:goal {
eq [lemma-1]: M:PNat + 0 = M:PNat .
eq [lemma-2]: M:PNat + s N:PNat = s(M:PNat + N:PNat) . }

Give a hint that we are doing induction on M, and try auto-mode:
:ind on (M:PNat)
:auto

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 22/28

Commutativity of Peano addition

Define Peano natural numbers
mod! PNAT {
[PZero PNzNat < PNat]
op 0 : -> PZero {ctor} .
op s_ : PNat -> PNzNat {ctor} .
op _+_ : PNat PNat -> PNat .
eq 0 + N:PNat = N .
eq s M:PNat + N:PNat = s(M + N) .

}

Then select/open the theory/module and specify the goals:
open PNAT .
:goal {
eq [lemma-1]: M:PNat + 0 = M:PNat .
eq [lemma-2]: M:PNat + s N:PNat = s(M:PNat + N:PNat) . }

Give a hint that we are doing induction on M, and try auto-mode:
:ind on (M:PNat)
:auto

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 22/28

Commutativity of Peano addition

Define Peano natural numbers
mod! PNAT {
[PZero PNzNat < PNat]
op 0 : -> PZero {ctor} .
op s_ : PNat -> PNzNat {ctor} .
op _+_ : PNat PNat -> PNat .
eq 0 + N:PNat = N .
eq s M:PNat + N:PNat = s(M + N) .

}

Then select/open the theory/module and specify the goals:
open PNAT .
:goal {
eq [lemma-1]: M:PNat + 0 = M:PNat .
eq [lemma-2]: M:PNat + s N:PNat = s(M:PNat + N:PNat) . }

Give a hint that we are doing induction on M, and try auto-mode:
:ind on (M:PNat)
:auto

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 22/28

Output

[si]=> :goal{root}
** Generated 2 goals
[ca]=> :goal{1}
[ca] discharged: eq [lemma-1]: 0 = 0
...
[ip]=> :goal{2-2-1}
[rd]=> :goal{2-2-1}
(consumed 0.0400 sec, including 10 rewrites + 46 matches)
** All goals are successfully discharged.

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 23/28

Commutativity of addition

Now add the two lemmas to the theory:

mod! PNAT-L {
inc(PNAT)
eq [lemma-1]: M:PNat + 0 = M .
eq [lemma-2]: M:PNat + s N:PNat = s(M + N) .

}

and try to proof commutativity of addition

open PNAT-L .
:goal { eq M:PNat + N:PNat = N:PNat + M:PNat . }
:ind on (M:PNat)
:apply (SI TC RD)

Not surprisingly:

....
} << proved >>
(consumed 0.0120 sec, including 7 rewrites + 47 matches)
** All goals are successfully discharged.

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 24/28

Commutativity of addition

Now add the two lemmas to the theory:

mod! PNAT-L {
inc(PNAT)
eq [lemma-1]: M:PNat + 0 = M .
eq [lemma-2]: M:PNat + s N:PNat = s(M + N) .

}

and try to proof commutativity of addition

open PNAT-L .
:goal { eq M:PNat + N:PNat = N:PNat + M:PNat . }
:ind on (M:PNat)
:apply (SI TC RD)

Not surprisingly:

....
} << proved >>
(consumed 0.0120 sec, including 7 rewrites + 47 matches)
** All goals are successfully discharged.

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 24/28

Commutativity of addition

Now add the two lemmas to the theory:

mod! PNAT-L {
inc(PNAT)
eq [lemma-1]: M:PNat + 0 = M .
eq [lemma-2]: M:PNat + s N:PNat = s(M + N) .

}

and try to proof commutativity of addition

open PNAT-L .
:goal { eq M:PNat + N:PNat = N:PNat + M:PNat . }
:ind on (M:PNat)
:apply (SI TC RD)

Not surprisingly:

....
} << proved >>
(consumed 0.0120 sec, including 7 rewrites + 47 matches)
** All goals are successfully discharged.

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 24/28

Proofs on lists

Use CITP to prove the following facts:
1 associativity of @ operation in NATLIST@
2 nil is right-identity of @
3 add reverse operations and show double reverse is identity

ad 1.
open NATLIST@ .
:goal{eq[@assoc]: (L1:NatList @ L2:NatList) @ L3:NatList

= L1 @ (L2 @ L3) .}
:ind on (L1:NatList) .
:apply (SI TC RD) .
close

ad 2.
open NATLIST@ .
:goal{eq[@ri]: L:NatList @ nil = L .}
:ind on (L:NatList) .
:apply (SI TC RD) .
close

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 25/28

Proofs on lists

Use CITP to prove the following facts:
1 associativity of @ operation in NATLIST@
2 nil is right-identity of @
3 add reverse operations and show double reverse is identity

ad 1.
open NATLIST@ .
:goal{eq[@assoc]: (L1:NatList @ L2:NatList) @ L3:NatList

= L1 @ (L2 @ L3) .}
:ind on (L1:NatList) .
:apply (SI TC RD) .
close

ad 2.
open NATLIST@ .
:goal{eq[@ri]: L:NatList @ nil = L .}
:ind on (L:NatList) .
:apply (SI TC RD) .
close

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 25/28

Proofs on lists

Use CITP to prove the following facts:
1 associativity of @ operation in NATLIST@
2 nil is right-identity of @
3 add reverse operations and show double reverse is identity

ad 1.
open NATLIST@ .
:goal{eq[@assoc]: (L1:NatList @ L2:NatList) @ L3:NatList

= L1 @ (L2 @ L3) .}
:ind on (L1:NatList) .
:apply (SI TC RD) .
close

ad 2.
open NATLIST@ .
:goal{eq[@ri]: L:NatList @ nil = L .}
:ind on (L:NatList) .
:apply (SI TC RD) .
close

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 25/28

Available tactics

SI simultaneous induction
CA case analysis after the constructors
TC theorem of constants
IP implication
RD reduction

Additional proof tactics based on case-splitting (not-constructor
based):

:ctf case splitting after Boolean values
:csp case splitting after a set of (arbitrary) equations

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 26/28

More exercises

Prove rev1(rev1(L)) = L and rev1(L) = rev2(L) for the
following module:
mod* NATLISTrev {
pr(NATLIST@A)
-- variables
vars L L1 L2 : NatList
var E : Nat
-- one argument reverse operation
op rev1 : NatList -> NatList .
eq rev1(nil) = nil .
eq rev1(E | L) = rev1(L) @ (E | nil) .
-- two arguments reverse operation
op rev2 : NatList -> NatList .
-- auxiliary function for rev2
op sr2 : NatList NatList -> NatList .
eq rev2(L) = sr2(L,nil) .
eq sr2(nil,L2) = L2 .
eq sr2(E | L1,L2) = sr2(L1,E | L2) .

}

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 27/28

Thanks for the attention

Algebraic specification and verification with CafeOBJ [5pt]Part 5 – Proving and CITP 28/28

