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WHAT ARE ONTOLOGIES GOOD FOR?

To standardize the terminology of an application domain
- by adopting a common vocabulary, easy to share information

- meaning of terms is constrained, so less misunderstandings
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WHAT ARE ONTOLOGIES GOOD FOR?

To standardize the terminology of an application domain
- by adopting a common vocabulary, easy to share information

- meaning of terms is constrained, so less misunderstandings

To present an
- ontology can be used to , making it

- especially useful when

To support automated reasoning

- uncover implicit connections between terms, errors in modelling

- exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries

3/29



APPLICATIONS OF OMQA: MEDICINE

General medical ontologies: SNOMED CT (~ 400,000 terms!), GALEN
Specialized ontologies: FMA (anatomy), NCI (cancer), ...

Interior View of the Heart
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Right Ventricle Papilary Muscles.

Querying & exchanging medical records (find patients for medical trials)
- myocardial infarction vs. Ml vs. heart attack vs. 410.0

Supports tools for (scans, x-rays) i



APPLICATIONS OF OMQA: LIFE SCIENCES

Hundreds of ontologies at BioPortal ( ):
Gene Ontology (GO), Cell Ontology, Pathway Ontology, Plant Anatomy, ...

Help scientists share, query, & visualize experimental data
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APPLICATIONS OF OMQA: ENTREPRISE INFORMATION SYSTEMS

Companies and organizations have lots of data
to support decision-making

Example industrial projects:
- Public debt data: Sapienza Univ. & Italian Department of Treasury
- Energy sector: Optique EU project (several univ, StatOil, & Siemens)
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OUR FOCUS: HORN DESCRIPTION LOGICS

Ontologies formulated using description logics (DLs):
- family of

- basis for OWL web ontology language (W3C)
- range from fairly simple to highly expressive

- complexity of query answering well understood
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OUR FOCUS: HORN DESCRIPTION LOGICS

Ontologies formulated using description logics (DLs):
- family of

- basis for OWL web ontology language (W3C)

- range from fairly simple to highly expressive

- complexity of query answering well understood

In this tutorial, focus on Horn description logics:

’ ’ ’ p oo

- good computational properties, well suited for OMQA
- still expressive enough for interesting applications
- basis for OWL 2 QL and OWL 2 EL profiles

Consider various types of queries
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PLAN FOR TUTORIAL

- Horn Description Logics
- Basics of OMQA

- Instance Queries

- Conjunctive Queries

- Navigational Queries

- Queries with Negation and Recursion

- Research Trends in OMQA
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HORN DESCRIPTION LOGICS



DL BASICS

Building blocks of DLs:

- concept names (unary predicates, classes)
IceCream, Pizza, Meat, SpicyDish, Dish, Menu, Restaurant, ...

- role names (binary predicates, properties)

haslingred, hasCourse, hasDessert, serves, ...
(constants)
menu32, pastadish17, d3, rest156, r12, ...
(specific menus, dishes, restaurants ...)

Nc / Ng / N;: set of all concept / role / names
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DL KNOWLEDGE BASES

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals
(Ind(A): individuals appearing in ABox .A)

- finite set of concept assertions A(a) and role assertions r(a, b)
- IceCream(d,): dish d, is of type IceCream
- hasDessert(m, d,): menu m is connected via hasDessert to dish d,
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DL KNOWLEDGE BASES

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals
(Ind(A): individuals appearing in ABox .A)

- finite set of concept assertions A(a) and role assertions r(a, b)
- IceCream(d,): dish d, is of type IceCream

- hasDessert(m, d,): menu m is connected via hasDessert to dish d,

TBox contains general knowledge about the domain of interest

- finite set of axioms (details on syntax to follow)
- IceCream is a subclass of Dessert
- hasCourse connects Menus to Dishes

- every Menu Is connected to at least one dish via hasCourse
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CONCEPT AND ROLE CONSTRUCTORS

Can build complex concepts and roles using constructors:

- conjunction (M), disjunction (1), negation (-)

Dessert r —=lceCream Pizza U PastaDish
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CONCEPT AND ROLE CONSTRUCTORS

Can build complex concepts and roles using constructors:
- conjunction (M), disjunction (1), negation (-)
Dessert 1 —lceCream Pizza LI PastaDish
- restricted forms of existential and universal quantification (3, V)

JhasCourse. T Jcontains.Meat Dish rYcontains.—Meat

( T acts as a “wildcard”, denotes set of all things)
- inverse (7) and composition (-) of roles

hasCourse™ contains - contains

(use NR‘ for set of role names and inverse roles)

(use inv(r) to toggle —: inv(r) = r—, inv(r-) =r)

: set of available constructors ! 12/29



TBOX AXIOMS

Concept inclusions C C D (C, D possibly complex concepts)

IceCream C Dessert Menu C FhasCourse. T Spicy M Dish E SpicyDish

Role inclusions R C S (R, S possibly complex roles)

haslingred C contains ingredOf™ C haslngred hasDessert C hasCourse

Note: type and syntax of axioms depends on the particular DL!
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DL SEMANTICS

Interpretation Z (“possible world”)
- domain of objects AZ (possibly infinite set)

that maps

~ set of objects
~ set of pairs of objects
~ object
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EXAMPLE: INTERPRETATION

AI
oitalFeast”
o
" T
Dish hasCoyrsa o
T
Dessert o
hCake®
Appetizer” .
Menu °
o

4 concept names: Dish, Dessert, Appetizer, Menu
1 role name: hasCourse 2 individual names: italFeast, chCake



DL SEMANTICS

Interpretation Z (“possible world”)

- domain of objects AZ (possibly infinite set)

that maps

~ set of objects
~ set of pairs of objects
~ object

Interpretation function -Z extends to complex concepts and roles:

T AT
il 0
—C AT\

GnG GfnG*t

JR.C  {di | there exists (di,d>) € RT with d, € C*}
VR.C {di | d» € C* forall (di,d,) € RT}

r- {(d27d1) | (dq,dz) € I’I}
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BACK TO THE EXAMPLE

Z&I
oitalFeast”
o
" T
Dish hasCoyrsa o
T
Dessert o
hCake®
Appetizer” .
Menu °
o

Dish i Menu Dessert Appetizer 3JhasCourse.T JhasCourse™ .Dessert
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SEMANTICS OF DL KBS

Satisfaction in an interpretation

- IsatisflesCCD < cLcpt
- IsatishesRCS &« RIcCS?
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SEMANTICS OF DL KBS

Satisfaction in an interpretation

- IsatisfiesCCD & cfcp?

- TsatisflesRC S & RECS?

- T satisfiesA(a) & af eA?

- T satisfiesr(a,b) & (af,b%)er?

Model of a KB K = interpretation that satisfies all statements in K

KC is satisfiable = K has at least one model

(written ) = every model Z of K satisfies o
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BACK TO THE EXAMPLE

AI

OitalFeast”

C‘m& O (hcake? o

% Appetizer®
o

Which of the following assertions / axioms is satisfied in Z?

Dessert C Dish  DishmMenuC L  Menu C 3hasCourse. T

JhasCourse™.T C Dish  Menu(italFeast) hasCourse(italFeast, chCake)/
19/29



SOME IMPORTANT HORN DLS

Idea: Horn DLs cannot express disjunction (explicitly or implicitly)
- better computational properties than non-Horn DLS (more on this later)
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SOME IMPORTANT HORN DLS

Idea: Horn DLs cannot express disjunction (explicitly or implicitly)
- better computational properties than non-Horn DLS (more on this later)

DL-Liteg

- concept inclusions By C (—)B; Bi, B, either A € Nc or 3R (R € NI)
- role inclusions R; C (—)R; Ri,Ry € N3
EL

- allows only T, 1, and 3r.C as constructors
- only concept inclusions in TBox

ELHT |
- additionally allows for L and inverse roles (r—)
- can also have role inclusions

of and

- also have (e.g. assert is transitive) 20029



BASICS OF OMQA
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ABOXES VS. DATABASES

ABoxes and databases (DBs) and are
= finite set of assertions ( )
= finite set of

ABoxes interpreted under open world assumption:
- every assertion in the ABox is assumed to hold (true)
- assertions not present in the ABox may hold or not (unknown)

Each ABox gives rise to many interpretations (its models)
- models can be infinite, can have infinitely many models

Databases interpreted under closed world assumption:
- every fact in the DB is assumed to hold (true)
- every fact not in the DB is assumed not to hold (false)

In other words, each DB corresponds to single finite interpretation
- domain of the interpretation = set of constants in DB
22/29



QUERYING DATABASES

Database maps ( = )

Database D ~» ans(g,D) = set of n-tuples of constants from D
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QUERYING DATABASES
( = )

Database maps
Database D ~» ans(g,D) = set of n-tuples of constants from D
ans(q,Z) = set of n-tuples of elements from Z

Interpretation Z ~

First-order (FO) query = first-order formula
- arity of FO query = number of free variables
answers = substitutions for free vars that make formula hold

example: Dish(x) A Vy.(contains(x,y) — =Spicy(y))
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QUERYING DATABASES

Database maps ( = )

Database D ~» ans(g,D) = set of n-tuples of constants from D

InterpretationZ ~» ans(q,Z) = set of n-tuples of elements from Z

First-order (FO) query = first-order formula
- arity of FO query = number of free variables
- answers = substitutions for free vars that make formula hold

- example: Dish(x) A Vy.(contains(x,y) — —Spicy(y))

Datalog queries = finite set of Datalog rules + ‘goal’ relation

- arity of Datalog query = arity of goal relation

- answers = exhaustively apply rules to DB / interpretation, collect
tuples in goal relation

- example: rules contains(x,z) < contains(x, y), contains(y,z) and

SpicyDish(x) « Dish(x), contains(x, y), Spicy(y)
23/29



QUERYING DL KNOWLEDGE BASES

Problem: gives rise to (its models),
but DB query semantics defines answers w.r.t. a single interpretation
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QUERYING DL KNOWLEDGE BASES

Problem: gives rise to (its models),
but DB query semantics defines answers w.r.t. a single interpretation

Solution: adopt certain answer semantics
- require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (ay, ..., a,) of individuals from A a certain

answer to n-ary query g over DL KB K = (T, A) iff

(af,...,ak) € ans(q,T) for every model Z of K

Question: what happens if K is unsatisfiable?

Ontology-mediated query answering (OMQA)
= computing certain answers to queries
24/29



EXAMPLE: CERTAIN ANSWERS

Consider the query q(x) = Dessert(x) and the DL-Liteg KB

T = {Cake C Dessert IceCream C Dessert hasDessert C hasCourse
JhasCourse C Menu 3JhasDessert™ C Dessert }
A = {Cake(d;) IceCream(d,) Dessert(ds) hasDessert(m,d,)}
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A = {Cake(d;) IceCream(d,) Dessert(ds) hasDessert(m,d,)}

Certain answers to g w.r.t. K:

€ cert(q,K) €A eT
- d, € cert(q,K) IceCream(d,) € A, IceCream C Dessert € T
€ cert(q, K) €A
- d, € cert(q, K) hasDessert(m, ds) € A, hasDessert™ C Dessert € T

25/29



EXAMPLE: CERTAIN ANSWERS

Consider the query q(x) = Dessert(x) and the DL-Liteg KB

T = {Cake C Dessert IceCream C Dessert hasDessert C hasCourse
JhasCourse C Menu 3JhasDessert™ C Dessert }
A = {Cake(d;) IceCream(d,) Dessert(ds) hasDessert(m,d,)}

Certain answers to g w.r.t. K:

€ cert(q,K) €A eT
- d, € cert(q,K) IceCream(d,) € A, IceCream C Dessert € T
€ cert(q, K) €A
- d, € cert(q, K) hasDessert(m, ds) € A, hasDessert™ C Dessert € T

The fifth individual m is not a certain answer; can construct model
J of K in which m7 ¢ Dessert?
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KEY TECHNIQUES FOR OMQA: QUERY REWRITING

Query rewriting: Reduces problem of finding certain answers to
standard DB query evaluation (~ exploit existing DB systems)

query evolucn‘lon
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KEY TECHNIQUES FOR OMQA: QUERY REWRITING

Query rewriting: Reduces problem of finding certain answers to
standard DB query evaluation (~ exploit existing DB systems)

query evolucn‘lon

Call g/(X) a rewriting of g(X) and 7 iff for every ABox A and tuple d

T,AE=q(@) < deans(q(X),Za) (Z4 =treat A as DB)

Types of rewritings: FO-rewritings (SQL), -
26/29



KEY TECHNIQUES FOR OMQA: SATURATION

Saturation: (some of) the implicit information
contained in the KB, making it available for query evaluation
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KEY TECHNIQUES FOR OMQA: SATURATION

Saturation: (some of) the implicit information
contained in the KB, making it available for query evaluation

Simple use of saturation: (works e.g. for RDFS ontologies)

- use saturation to ‘complete’ the ABox by adding those assertions
that are logically entailed from the KB

- then evaluate the query over the saturated ABox

More complex uses:

- enrich the ABox in other ways (e.g. add new ABox individuals to
witness the existential restrictions 3R.C)
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COMPLEXITY OF OMQA

View OMQA as a decision problem (yes-or-no question):

PROBLEM: O answering in £ (Q a query language, £ a DL)

INPUT: An n-ary query g € Q, an ABox A4, a L-TBox 7,
and a tuple @ € Ind(A)"

QUESTION:  Does d belong to cert(q, (7,.A))?
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COMPLEXITY OF OMQA

View OMQA as a decision problem (yes-or-no question):

PROBLEM: O answering in £ (Q a query language, £ a DL)

INPUT: An n-ary query g € Q, an ABox A4, a L-TBox 7,
and a tuple @ € Ind(A)"

QUESTION:  Does d belong to cert(q, (7,.A))?

:in terms of

Data complexity: in terms of size of A only
- view rest of input as fixed (of constant size)

- motivation: ABox typically much larger than rest of input

Note: use |A| to denote size of A (similarly for |T], |q|, etc.)

28/29



COMPLEXITY CLASSES

We will mention the following standard classes:

P problems solvable in deterministic polynomial time
problems solvable in
CONP problems whose complement is solvable in
non-deterministic polynomial time
problems solvable in
NLOGSPACE problems solvable in non-det. logarithmic space

problems solvable in (note:

Exp problems solvable in deterministic exponential time
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COMPLEXITY CLASSES

We will mention the following standard classes:

P problems solvable in deterministic polynomial time
problems solvable in
CONP problems whose complement is solvable in
non-deterministic polynomial time
problems solvable in
NLOGSPACE problems solvable in non-det. logarithmic space

problems solvable in (note:

Exp problems solvable in deterministic exponential time

Another less known but important class:
ACy problems solvable by uniform family of
polynomial-size constant-depth circuits
Relationships between classes:

ACy € LOGSPACE C NLOGSPACE C P C NP C PSPACE C EXP .
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