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what are ontologies good for?

To standardize the terminology of an application domain
∙ by adopting a common vocabulary, easy to share information
∙ meaning of terms is constrained, so less misunderstandings

To present an intuitive and unified view of data sources
∙ ontology can be used to enrich the data vocabulary, making it
easier for users to formulate their queries

∙ especially useful when integrating multiple data sources

To support automated reasoning
∙ uncover implicit connections between terms, errors in modelling
∙ exploit knowledge in the ontology during query answering, to get
back a more complete set of answers to queries
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applications of omqa: medicine

General medical ontologies: SNOMED CT (∼ 400,000 terms!), GALEN
Specialized ontologies: FMA (anatomy), NCI (cancer), ...

Querying & exchanging medical records (find patients for medical trials)
∙ myocardial infarction vs. MI vs. heart attack vs. 410.0

Supports tools for annotating and visualizing patient data (scans, x-rays) 4/29



applications of omqa: life sciences

Hundreds of ontologies at BioPortal (http://bioportal.bioontology.org/):
Gene Ontology (GO), Cell Ontology, Pathway Ontology, Plant Anatomy, ...

Help scientists share, query, & visualize experimental data
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applications of omqa: entreprise information systems

Companies and organizations have lots of data
∙ need easy and flexible access to support decision-making

Example industrial projects:
∙ Public debt data: Sapienza Univ. & Italian Department of Treasury
∙ Energy sector: Optique EU project (several univ, StatOil, & Siemens)
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our focus: horn description logics

Ontologies formulated using description logics (DLs):
∙ family of decidable fragments of first-order logic
∙ basis for OWL web ontology language (W3C)
∙ range from fairly simple to highly expressive
∙ complexity of query answering well understood

In this tutorial, focus on Horn description logics:
∙ DL-LiteR, EL, ELHI , Horn-SHIQ, ...
∙ good computational properties, well suited for OMQA
∙ still expressive enough for interesting applications
∙ basis for OWL 2 QL and OWL 2 EL profiles

Consider various types of queries
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plan for tutorial

∙ Horn Description Logics
∙ Basics of OMQA

∙ Instance Queries
∙ Conjunctive Queries
∙ Navigational Queries
∙ Queries with Negation and Recursion

∙ Research Trends in OMQA

∙ Practical OMQA Systems: Ontop

8/29



horn description logics



dl basics

Building blocks of DLs:

∙ concept names (unary predicates, classes)

IceCream,Pizza,Meat, SpicyDish,Dish,Menu,Restaurant, ...

∙ role names (binary predicates, properties)

hasIngred,hasCourse,hasDessert, serves, ...

∙ individual names (constants)

menu32,pastadish17,d3, rest156, r12, ...

(specific menus, dishes, restaurants ...)

NC / NR / NI: set of all concept / role / individual names
10/29



dl knowledge bases

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals
(Ind(A): individuals appearing in ABox A)

∙ finite set of concept assertions A(a) and role assertions r(a,b)
∙ IceCream(d2): dish d2 is of type IceCream
∙ hasDessert(m,d2): menu m is connected via hasDessert to dish d2

TBox contains general knowledge about the domain of interest

∙ finite set of axioms (details on syntax to follow)
∙ IceCream is a subclass of Dessert
∙ hasCourse connects Menus to Dishes
∙ every Menu is connected to at least one dish via hasCourse
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concept and role constructors

Can build complex concepts and roles using constructors:

∙ conjunction (⊓), disjunction (⊔), negation (¬)

Dessert ⊓ ¬IceCream Pizza ⊔ PastaDish

∙ restricted forms of existential and universal quantification (∃, ∀)

∃hasCourse.⊤ ∃contains.Meat Dish ⊓ ∀contains.¬Meat
( ⊤ acts as a “wildcard”, denotes set of all things)

∙ inverse (−) and composition (·) of roles

hasCourse− contains · contains

(use N±
R for set of role names and inverse roles)

(use inv(r) to toggle −: inv(r) = r− , inv(r−) = r )

Note: set of available constructors depends on the particular DL!
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tbox axioms

Concept inclusions C ⊑ D (C,D possibly complex concepts)

IceCream⊑ Dessert Menu⊑ ∃hasCourse.⊤ Spicy ⊓ Dish⊑ SpicyDish

Role inclusions R ⊑ S (R, S possibly complex roles)

hasIngred⊑ contains ingredOf− ⊑ hasIngred hasDessert⊑ hasCourse

Note: type and syntax of axioms depends on the particular DL!
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dl semantics

Interpretation I (“possible world”)

∙ domain of objects ∆I (possibly infinite set)

∙ interpretation function ·I that maps

∙ concept name A⇝ set of objects AI ⊆ ∆I

∙ role name r⇝ set of pairs of objects rI ⊆ ∆I ×∆I

∙ individual name a⇝ object aI ∈ ∆I
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example: interpretation

∆I

italFeastI

chCakeI

DishI

DessertI

AppetizerI
MenuI

hasCour
se

hasCourse

hasCourse

has
Cou

rse

4 concept names: Dish, Dessert, Appetizer, Menu
1 role name: hasCourse 2 individual names: italFeast, chCake
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dl semantics

Interpretation I (“possible world”)

∙ domain of objects ∆I (possibly infinite set)
∙ interpretation function ·I that maps
∙ concept name A⇝ set of objects AI ⊆ ∆I

∙ role name r⇝ set of pairs of objects rI ⊆ ∆I ×∆I

∙ individual name a⇝ object aI ∈ ∆I

Interpretation function ·I extends to complex concepts and roles:
⊤ ∆I

⊥ ∅
¬C ∆I \ CI

C1 ⊓ C2 C1I ∩ C2I

∃R.C {d1 | there exists (d1,d2) ∈ RI with d2 ∈ CI}
∀R.C {d1 | d2 ∈ CI for all (d1,d2) ∈ RI}
r− {(d2,d1) | (d1,d2) ∈ rI}
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back to the example

∆I

italFeastI

chCakeI

DishI

DessertI

AppetizerI
MenuI

hasCour
se

hasCourse

hasCourse

has
Cou

rse

Dish ⊓Menu Dessert ⊓ Appetizer ∃hasCourse.⊤ ∃hasCourse−.Dessert
17/29



semantics of dl kbs

Satisfaction in an interpretation

∙ I satisfies C ⊑ D ⇔ CI ⊆ DI

∙ I satisfies R ⊑ S ⇔ RI ⊆ SI

∙ I satisfies A(a) ⇔ aI ∈ AI

∙ I satisfies r(a,b) ⇔ (aI ,bI) ∈ rI

Model of a KB K = interpretation that satisfies all statements in K

K is satisfiable = K has at least one model

K entails α (written K |= α) = every model I of K satisfies α
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back to the example

∆I

italFeastI

chCakeI

DishI

DessertI

AppetizerI
MenuI

hasCour
se

hasCourse

hasCourse

has
Cou

rse

Which of the following assertions / axioms is satisfied in I?

Dessert⊑ Dish Dish ⊓Menu⊑⊥ Menu⊑ ∃hasCourse.⊤
∃hasCourse−.⊤⊑ Dish Menu(italFeast) hasCourse(italFeast, chCake)
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some important horn dls

Idea: Horn DLs cannot express disjunction (explicitly or implicitly)
∙ better computational properties than non-Horn DLs (more on this later)

DL-LiteR
∙ concept inclusions B1 ⊑ (¬)B2 B1,B2 either A ∈ NC or ∃R (R ∈ N±

R )
∙ role inclusions R1 ⊑ (¬)R2 R1,R2 ∈ N±

R

EL
∙ allows only ⊤, ⊓, and ∃r.C as constructors
∙ only concept inclusions in TBox

ELHI⊥
∙ additionally allows for ⊥ and inverse roles (r−)
∙ can also have role inclusions

Horn-SHIQ
∙ limited use of ¬, ∀r.C, and number restrictions (≥ nR.C, ≤ nR.C)
∙ also have transitivity axioms (e.g. assert contains is transitive)
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basics of omqa



aboxes vs. databases

ABoxes and databases (DBs) and are syntactically similar:
∙ ABox = finite set of assertions (unary and binary facts)
∙ Database = finite set of facts of arbitrary arity

ABoxes interpreted under open world assumption:
∙ every assertion in the ABox is assumed to hold (true)
∙ assertions not present in the ABox may hold or not (unknown)

Each ABox gives rise to many interpretations (its models)
∙ models can be infinite, can have infinitely many models

Databases interpreted under closed world assumption:
∙ every fact in the DB is assumed to hold (true)
∙ every fact not in the DB is assumed not to hold (false)

In other words, each DB corresponds to single finite interpretation
∙ domain of the interpretation = set of constants in DB
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querying databases

Database query q of arity n maps (Boolean query = arity 0)

Database D ⇝ ans(q,D) = set of n-tuples of constants from D

Interpretation I ⇝ ans(q, I) = set of n-tuples of elements from I

First-order (FO) query = first-order formula
∙ arity of FO query = number of free variables
∙ answers = substitutions for free vars that make formula hold
∙ example: Dish(x) ∧ ∀y.(contains(x, y)→ ¬Spicy(y))

Datalog queries = finite set of Datalog rules + ‘goal’ relation
∙ arity of Datalog query = arity of goal relation
∙ answers = exhaustively apply rules to DB / interpretation, collect
tuples in goal relation

∙ example: rules contains(x, z)← contains(x, y), contains(y, z) and
SpicyDish(x)← Dish(x), contains(x, y), Spicy(y)
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querying dl knowledge bases

Problem: each KB gives rise to multiple interpretations (its models),
but DB query semantics defines answers w.r.t. a single interpretation

Solution: adopt certain answer semantics
∙ require tuple to be an answer w.r.t. all models of KB

Formally: Call a tuple (a1, . . . ,an) of individuals from A a certain
answer to n-ary query q over DL KB K = (T ,A) iff

(aI1 , . . . ,aIn ) ∈ ans(q, I) for every model I of K

Question: what happens if K is unsatisfiable?

Ontology-mediated query answering (OMQA)
= computing certain answers to queries

24/29
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example: certain answers

Consider the query q(x) = Dessert(x) and the DL-LiteR KB K = (T ,A):

T = {Cake⊑ Dessert IceCream⊑ Dessert hasDessert⊑ hasCourse
∃hasCourse⊑Menu ∃hasDessert− ⊑ Dessert }

A = {Cake(d1) IceCream(d2) Dessert(d3) hasDessert(m,d4)}

Certain answers to q w.r.t. K:
∙ d1 ∈ cert(q,K) Cake(d1) ∈ A, Cake⊑ Dessert ∈ T

∙ d2 ∈ cert(q,K) IceCream(d2) ∈ A, IceCream⊑ Dessert ∈ T

∙ d3 ∈ cert(q,K) Dessert(d3) ∈ A

∙ d4 ∈ cert(q,K) hasDessert(m,d4)∈A, hasDessert− ⊑ Dessert ∈ T

The fifth individual m is not a certain answer: can construct model
J of K in which mJ ̸∈ DessertJ
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key techniques for omqa: query rewriting

Query rewriting: Reduces problem of finding certain answers to
standard DB query evaluation (⇝ exploit existing DB systems)

+
query rewriting

+

+
query evaluation

TBox T

query

ABox

q

database query q0

query answersA

Call q′(⃗x) a rewriting of q(⃗x) and T iff for every ABox A and tuple a⃗

T ,A |= q(a⃗) ⇔ a⃗ ∈ ans(q′(⃗x), IA) (IA = treat A as DB)

Types of rewritings: FO-rewritings (SQL), Datalog rewritings, ...
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key techniques for omqa: saturation

Saturation: Render explicit (some of) the implicit information
contained in the KB, making it available for query evaluation

Simple use of saturation: (works e.g. for RDFS ontologies)

∙ use saturation to ‘complete’ the ABox by adding those assertions
that are logically entailed from the KB

∙ then evaluate the query over the saturated ABox

More complex uses:
∙ enrich the ABox in other ways (e.g. add new ABox individuals to
witness the existential restrictions ∃R.C)

∙ combine saturation with query rewriting
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complexity of omqa

View OMQA as a decision problem (yes-or-no question):

Problem: Q answering in L (Q a query language, L a DL)
Input: An n-ary query q ∈ Q, an ABox A, a L-TBox T ,

and a tuple a⃗ ∈ Ind(A)n

Question: Does a⃗ belong to cert(q, (T ,A))?

Combined complexity: in terms of size of whole input

Data complexity: in terms of size of A only
∙ view rest of input as fixed (of constant size)
∙ motivation: ABox typically much larger than rest of input

Note: use |A| to denote size of A (similarly for |T |, |q|, etc.)
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complexity classes

We will mention the following standard classes:

P problems solvable in deterministic polynomial time
NP problems solvable in non-det. polynomial time

coNP problems whose complement is solvable in
non-deterministic polynomial time

LogSpace problems solvable in deterministic logarithmic space
NLogSpace problems solvable in non-det. logarithmic space

PSpace problems solvable in polynomial space (note: =NPSpace)

Exp problems solvable in deterministic exponential time

Another less known but important class:

AC0 problems solvable by uniform family of
polynomial-size constant-depth circuits

Relationships between classes:

AC0 ⊊ LogSpace ⊆ NLogSpace ⊆ P ⊆ NP ⊆ PSpace ⊆ Exp
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