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Part 7: Alternation hierarchy of FO?
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Outline

@ The alternation function of FO?

@ FO? is more succinct than FO?
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Definitions

G, H, ...will be binary structures (typically, vertex-colored graphs).
A sentence ® distinguishes G from H if G |= ® while H [~ ®.

D?*(G,H) = the min quantifier depth of such ® € FO?
A%(G,H) = the min alternation depth of such ® € FO?

(only =, A, V are used, and — always stays
in the front of relation symbols).

D%*(n) = maxD?(G, H),
A%(n) = maxA%(G, H),

where max is over n-element G' and H distinguishable in FO?.
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Motivation

o FO? denotes the fragment of FO? consisting of formulas of
alternation depth at most a.
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Motivation

o FO? denotes the fragment of FO? consisting of formulas of
alternation depth at most a.
@ We will say that the quantifier alternation hierarchy of FO?
collapses to its a-th level if
e every property of graphs definable in FO? can also be defined
in FO2;
e or, equivalently, every sentence in FO? has an equivalent
sentence in FOZ.

If it does not collapse to any level, we will say that it is strict.
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Motivation

o FO? denotes the fragment of FO? consisting of formulas of
alternation depth at most a.
@ We will say that the quantifier alternation hierarchy of FO?
collapses to its a-th level if
e every property of graphs definable in FO? can also be defined
in FO2;
e or, equivalently, every sentence in FO? has an equivalent
sentence in FOZ.
If it does not collapse to any level, we will say that it is strict.
@ If the alternation hierarchy collapses to the a-th level, then

A%(n) < a.
@ Thus, showing that
. 2 .
nh_)rgloA (n) = o0

is a way of proving that the hierarchy is strict.
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Motivation

FO? denotes the fragment of FO? consisting of formulas of
alternation depth at most a.
We will say that the quantifier alternation hierarchy of FO?
collapses to its a-th level if
e every property of graphs definable in FO? can also be defined
in FO2;
e or, equivalently, every sentence in FO? has an equivalent
sentence in FOZ.
If it does not collapse to any level, we will say that it is strict.
If the alternation hierarchy collapses to the a-th level, then

A%(n) < a.
Thus, showing that
nh—%o A?%(n) = oo
is a way of proving that the hierarchy is strict.

The rate of growth of A%(n) can be regarded as a quality of

the strictness of the alternation hierarchy.
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Bounds for A%(n) and D?(n)

Theorem (Krebs, V. 2015)
%n—2<A2(n) <D?*n)<n+1

Remark

The upper bound due to Immerman and Lander 1990
(the color stabilization argument)
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A*(n) > tn—2

Assumption: Spoiler pebbles along edges.
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Assumption: Spoiler pebbles along edges.

) ) ) ) ) ) )
A\ A\ A\ A\
P -
A 1 ) ) ) .
\ A ’ A\ A\ A\ A\ A\ A\
-

-’

e——O0—O—Q—O0—O0—0
V-
1 ) ) .
‘.l AN AN AN AN AN AN

moves: V3V



2 1
A%(n) > gn—2
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A%(n) > n/8 — 2: Consider 2G and 2H
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A%(n) > logzn — 2 over trees (due to Chandra-Harel 1982)
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A%(n) > loggn — 2 over trees (due to Chandra-Harel 1982)
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A%(n) > logsm — 2 over trees

Open problem
How tight is this lower bound?

Remark
If £ > 3, then over trees

logj, 1 n —2 < A¥(n) < D*(n) < (k + 3) logy n.
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Outline

@ FO? is more succinct than FO?
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FO? is more succinct than FO?

Recall that D?(n) < n + 1.
Let D2(n) be the analog of D?(n) for FO2.

Theorem
D2(n) = Q(n?) for each a. J
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FO? is more succinct than FO?

Recall that D?(n) < n + 1.
Let D2(n) be the analog of D?(n) for FO2.

Theorem
D2(n) = Q(n?) for each a.

Remark

D?(n) < n?+ 1 for each a.

Proof-idea: If Spoiler is going to move one of the pebbles, the rest
of the game is determined by the position (u,v) € V(G) x V(H)
of the other pebble pair. If the play is optimal and finite, the same
position (u,v) never occurs twice.
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Existential-positive FO? (recap)

Let D2, (n) be the variant of D%(n) for FOZ2 | .
3+ 3+

Theorem
Dg?_i_(n) > & (n—10)%

G H

Note that D?(G, H) < 3. This can be fixed.

43/62



Lifting it to FO?



Lifting it to FO?



Lifting it to FO?



Lifting it to FO?



Lifting it to FO?



Lifting it to FO?



Lifting it to FO?



Lifting it to FO?

<



Lifting it to FO?

|
\
= A



Lifting it to FO?



Lifting it to FO?



Lifting it to FO?



Lifting it to FO?
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Lifting it to FO?
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Switching to colored graphs
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Lifting it further to FO%

For FO2, a > 1 we apply the tree construction with G and H at
the leaves.

o/ m\)/
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