A logical approach to Isomorphism Testing and Constraint Satisfaction

Oleg Verbitsky

Humboldt University of Berlin, Germany

ESSLLI 2016, 15-19 August

Part 7: Alternation hierarchy of FO^2

Outline

 $lue{1}$ The alternation function of FO^2

References

Outline

 $lue{1}$ The alternation function of FO^2

2 ${\rm FO^2}$ is more succinct than ${\rm FO_a^2}$

References

Definitions

 G, H, \ldots will be binary structures (typically, vertex-colored graphs).

A sentence Φ distinguishes G from H if $G \models \Phi$ while $H \not\models \Phi$.

$$\begin{array}{ll} D^2(G,H) &=& \text{the min quantifier depth of such } \Phi \in FO^2. \\ A^2(G,H) &=& \text{the min alternation depth of such } \Phi \in FO^2 \\ && \text{(only } \neg, \, \wedge, \, \vee \text{ are used, and } \neg \text{ always stays} \\ && \text{in the front of relation symbols)}. \end{array}$$

$$D^{2}(n) = \max D^{2}(G, H),$$

$$A^{2}(n) = \max A^{2}(G, H).$$

where \max is over *n*-element G and H distinguishable in FO^2 .

 $\bullet~{\rm FO_a^2}$ denotes the fragment of ${\rm FO^2}$ consisting of formulas of alternation depth at most a.

- FO_a^2 denotes the fragment of FO^2 consisting of formulas of alternation depth at most a.
- We will say that the quantifier alternation hierarchy of FO^2 collapses to its a-th level if
 - every property of graphs definable in FO^2 can also be defined in FO_a^2 ;
 - or, equivalently, every sentence in FO^2 has an equivalent sentence in FO_a^2 .

If it does not collapse to any level, we will say that it is strict.

- FO_a^2 denotes the fragment of FO^2 consisting of formulas of alternation depth at most a.
- We will say that the quantifier alternation hierarchy of FO² collapses to its a-th level if
 - every property of graphs definable in FO^2 can also be defined in FO_a^2 ;
 - or, equivalently, every sentence in FO^2 has an equivalent sentence in FO^2_a .

If it does not collapse to any level, we will say that it is strict.

ullet If the alternation hierarchy collapses to the a-th level, then

$$A^2(n) \le a$$
.

Thus, showing that

$$\lim_{n \to \infty} A^2(n) = \infty$$

is a way of proving that the hierarchy is strict.

- FO_a^2 denotes the fragment of FO^2 consisting of formulas of alternation depth at most a.
- We will say that the quantifier alternation hierarchy of FO² collapses to its a-th level if
 - every property of graphs definable in FO^2 can also be defined in FO_a^2 ;
 - or, equivalently, every sentence in FO^2 has an equivalent sentence in FO^2_a .

If it does not collapse to any level, we will say that it is strict.

 \bullet If the alternation hierarchy collapses to the a-th level, then

$$A^2(n) \le a$$
.

Thus, showing that

$$\lim_{n \to \infty} A^2(n) = \infty$$

is a way of proving that the hierarchy is strict.

• The rate of growth of $A^2(n)$ can be regarded as a quality of the strictness of the alternation hierarchy.

9/62

Bounds for $A^2(n)$ and $D^2(n)$

Theorem (Krebs, V. 2015)

$$\frac{1}{8}n - 2 < A^2(n) \le D^2(n) \le n + 1$$

Remark

The upper bound due to Immerman and Lander 1990 (the color stabilization argument)

$A^2(n) > \frac{1}{8}n - 2$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: ∃

$$A^2(n) > \frac{1}{8}n - 2$$

moves: ∃

$$A^2(n) > \frac{1}{8}n - 2$$

moves: ∃

$$A^2(n) > \frac{1}{8}n - 2$$

 $moves: \ \exists$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \exists$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \exists$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \exists$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \exists \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \exists \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: $\exists \forall \exists \forall$

$$A^2(n) > \frac{1}{8}n - 2$$

moves: ∃∀∃∀∃

$$A^2(n) > \frac{1}{8}n - 2$$

moves: ∃∀∃∀∃

$$A^2(n) > n/4 - 1$$

$$A^2(n) > \frac{1}{8}n - 2$$

Assintation://Stockler/plebbles/allong/eblebs.

moves: $\exists \forall \exists \forall \exists$

 $A^2(n) > n/8 - 2$: Consider 2G and 2H

$A^2(n) > \log_3 n - 2$ over trees (due to Chandra-Harel 1982)

$A^2(n) > \log_3 n - 2$ over trees (due to Chandra-Harel 1982)

$$A^2(n) > \log_3 n - 2$$
 over trees

Open problem

How tight is this lower bound?

Remark

If $k \geq 3$, then over trees

$$\log_{k+1} n - 2 < A^k(n) \le D^k(n) < (k+3)\log_2 n.$$

Outline

1 The alternation function of FO^2

References

FO^2 is more succinct than FO^2_a

Recall that $D^2(n) \leq n+1$.

Let $D_a^2(n)$ be the analog of $D^2(n)$ for $\mathrm{FO}_a^2.$

Theorem

$$D_a^2(n) = \Omega(n^2)$$
 for each a .

FO^2 is more succinct than FO^2_a

Recall that $D^2(n) \leq n+1$.

Let $D_a^2(n)$ be the analog of $D^2(n)$ for FO_a^2 .

Theorem

 $D_a^2(n) = \Omega(n^2)$ for each a.

Remark

 $D_a^2(n) \leq n^2 + 1$ for each a.

Proof-idea: If Spoiler is going to move one of the pebbles, the rest of the game is determined by the position $(u,v) \in V(G) \times V(H)$ of the other pebble pair. If the play is optimal and finite, the same position (u,v) never occurs twice.

Existential-positive FO² (recap)

Let $D^2_{\exists,+}(n)$ be the variant of $D^2(n)$ for $FO^2_{\exists,+}$.

Theorem

$$D_{\exists,+}^2(n) > \frac{1}{6} (n-10)^2$$
.

Note that $D_1^2(G, H) \leq 3$. This can be fixed.

Lifting it to FO_a^2

Switching to colored graphs

Lifting it further to FO_a^2

For FO_a^2 , a > 1 we apply the tree construction with G and H at the leaves.

Outline

 \bullet The alternation function of FO^2

 $\ensuremath{\text{2}}\xspace$ $\ensuremath{\text{FO}^2}\xspace$ is more succinct than $\ensuremath{\text{FO}^2_a}\xspace$

References

References

- A.K. Chandra and D. Harel. Structure and complexity of relational queries. J. Comput. Syst. Sci., 25:99–128 (1982).
- C. Berkholz, A. Krebs, and O. Verbitsky. Bounds for the quantifier depth in finite-variable logics: Alternation hierarchy. ACM Transactions on Computational Logic 16, Article 21 (2015).