Introduction to Non(-)monotonic Logic

Christian Straßer and Mathieu Beirlaen
Research Group For Non-Monotonic Logic and Formal Argumentation
http://homepages.ruhr-uni-bochum.de/defeasible-reasoning
Institute for Philosophy II
Ruhr University Bochum
christian.strasser@ruhr-uni-bochum.de
mathieubeirlaen@gmail.com

ESSLLI 2016, Bolzano
Day 5. Formal argumentation

What is (the structure of) an argument?

- Deductive proofs
- Dialogue games (Lorenz and Lorenzen)
- Toulmin's scheme (1958)
- Argumentation schemes (Walton)

Generally, if A then B occurs

CQ1: How strong is the causal generalization?
CQ2: Is the evidence cited strong enough to warrant the generalization?
CQ3: Are there other factors that would interfere with the effect?
What is (the structure of) an argument?

- Deductive proofs
What is (the structure of) an argument?

- Deductive proofs
- Dialogue games (Lorenz and Lorenzen)
What is (the structure of) an argument?

- Deductive proofs
- Dialogue games (Lorenz and Lorenzen)
- Toulmin’s scheme (1958)
What is (the structure of) an argument?

- Deductive proofs
- Dialogue games (Lorenz and Lorenzen)
- Toulmin’s scheme (1958)

Generally, if A then B

A occurs

B occurs

CQ1: How strong is the causal generalization?

CQ2: Is the evidence cited strong enough to warrant the generalization?

CQ3: Are there other factors that would interfere with the effect?

- Argumentation schemes (Walton)
Given a collection of arguments, how do we determine which arguments to accept?
Given a collection of arguments, how do we determine which arguments to accept?

Abstract perspective (Dung, 1995):
“an argument is an abstract entity whose role is solely determined by its relations to other arguments. No special attention is paid to the internal structure of the arguments”
Given a collection of arguments, how do we determine which arguments to accept?

Abstract perspective (Dung, 1995):
“an argument is an abstract entity whose role is solely determined by its relations to other arguments. No special attention is paid to the internal structure of the arguments”

“whether or not a rational agent believes in a statement depends on whether or not the argument supporting this statement can be successfully defended against the counterarguments”
Given a collection of arguments, how do we determine which arguments to accept?

Abstract perspective (Dung, 1995):
“an argument is an abstract entity whose role is solely determined by its relations to other arguments. No special attention is paid to the internal structure of the arguments”

“whether or not a rational agent believes in a statement depends on whether or not the argument supporting this statement can be successfully defended against the counterarguments”

“The goal of this paper is to give a scientific account of the basic principle “The one who has the last word laughts best” of argumentation, and to explore possible ways for implementing this principle on computers”
Dung’s 1995 set-up

An argumentation framework AF is a pair $\langle \text{Args}, \text{Att} \rangle$ where

- Args is a set of arguments, and
- $\text{Att} \subseteq \text{Args} \times \text{Args}$ is a binary relation of attack between arguments.

We say that argument A attacks argument B iff $(A, B) \in \text{Att}$.

AFs are represented as directed graphs. How shall we label nodes in the graph? When are arguments good, acceptable (in)? bad, rejected (out)? unacceptable, undecided (neither)?
Dung’s 1995 set-up

An argumentation framework AF is a pair $\langle\text{Args, Att}\rangle$ where
- Args is a set of arguments, and
Dung’s 1995 set-up

An argumentation framework AF is a pair $\langle \text{Args, Att} \rangle$ where
- Args is a set of arguments, and
- $\text{Att} \subseteq \text{Args} \times \text{Args}$ is a binary relation of attack between arguments.
Dung’s 1995 set-up

An argumentation framework AF is a pair $\langle \text{Args}, \text{Att} \rangle$ where
- Args is a set of arguments, and
- $\text{Att} \subseteq \text{Args} \times \text{Args}$ is a binary relation of attack between arguments.

We say that argument A attacks argument B iff $(A, B) \in \text{Att}$.
Dung’s 1995 set-up

An argumentation framework AF is a pair $\langle \text{Args}, \text{Att} \rangle$ where
- Args is a set of arguments, and
- $\text{Att} \subseteq \text{Args} \times \text{Args}$ is a binary relation of attack between arguments.

- We say that argument A attacks argument B iff $(A, B) \in \text{Att}$.
- AFs are represented as directed graphs.
Dung’s 1995 set-up

An argumentation framework AF is a pair $\langle \text{Args}, \text{Att} \rangle$ where

- Args is a set of arguments, and
- $\text{Att} \subseteq \text{Args} \times \text{Args}$ is a binary relation of attack between arguments.

▶ We say that argument A attacks argument B iff $(A, B) \in \text{Att}$.
▶ AFs are represented as directed graphs

? How shall we label nodes in the graph? When are arguments
 Good, acceptable (in)?
 Bad, rejected (out)?
 Unacceptable, undecided (neither)?
Dung’s 1995 set-up

An argumentation framework AF is a pair $\langle \text{Args}, \text{Att} \rangle$ where
- Args is a set of arguments, and
- $\text{Att} \subseteq \text{Args} \times \text{Args}$ is a binary relation of attack between arguments.

▶ We say that argument A attacks argument B iff $(A, B) \in \text{Att}$.
▶ AFs are represented as directed graphs
 ? How shall we label nodes in the graph? When are arguments
 Good, acceptable (in)?
 Bad, rejected (out)?
 Unacceptable, undecided (neither)?
⇒ 3-valued acceptability semantics
A set S of arguments is conflict-free if there are no arguments A and B in S such that A attacks B.
Desiderata for acceptable (sets of) arguments

- A set S of arguments is conflict-free if there are no arguments A and B in S such that A attacks B.
- Argument $A \in \text{Args}$ is acceptable w.r.t. a set S of arguments iff for each $B \in \text{Args}$: if B attacks A then B is attacked by S. (S defends A.)
Desiderata for acceptable (sets of) arguments

- A set S of arguments is conflict-free if there are no arguments A and B in S such that A attacks B.
- Argument $A \in \text{Args}$ is acceptable w.r.t. a set S of arguments iff for each $B \in \text{Args}$: if B attacks A then B is attacked by S. (S defends A.)
- A conflict-free set of arguments S is admissible iff each argument in S is defended by S.
Complete extensions

An admissible set S of arguments is a complete extension iff each argument, which is acceptable w.r.t. S, belongs to S.
Complete extensions

An admissible set S of arguments is a complete extension iff each argument, which is acceptable w.r.t. S, belongs to S.

Complete extensions correspond to complete labellings in the following way:

Let $(\text{Args}, \text{Att})$ be an AF and $\mathcal{L} : \text{Args} \rightarrow \{\text{in, out, undec}\}$ be a total function. We say that \mathcal{L} is a complete labelling iff:

\[
\forall A \in \text{Args} : \mathcal{L}(A) = \text{out} \text{ iff } \exists B \in \text{Args} : ((B, A) \in \text{Att} \land \mathcal{L}(B) = \text{in}), \text{ and}
\]

\[
\forall A \in \text{Args} : \mathcal{L}(A) = \text{in} \text{ iff } \forall B \in \text{Args} : ((B, A) \in \text{Att} \supset \mathcal{L}(B) = \text{out}).
\]
Complete extensions

An admissible set S of arguments is a complete extension iff each argument, which is acceptable w.r.t. S, belongs to S.

Complete extensions correspond to complete labellings in the following way:

Let $(\text{Args}, \text{Att})$ be an AF and $\mathcal{L} : \text{Args} \rightarrow \{\text{in, out, undec}\}$ be a total function. We say that \mathcal{L} is a complete labelling iff:

$\forall A \in \text{Args} : \mathcal{L}(A) = \text{out} \iff \exists B \in \text{Args} : ((B, A) \in \text{Att} \land \mathcal{L}(B) = \text{in})$, and

$\forall A \in \text{Args} : \mathcal{L}(A) = \text{in} \iff \forall B \in \text{Args} : ((B, A) \in \text{Att} \supset \mathcal{L}(B) = \text{out})$.

\[
\begin{align*}
A & \rightarrow B \\
B & \rightarrow C
\end{align*}
\]
Complete extensions

An admissible set S of arguments is a complete extension iff each argument, which is acceptable w.r.t. S, belongs to S.

Complete extensions correspond to complete labellings in the following way:

Let $(\text{Args}, \text{Att})$ be an AF and $\mathcal{L} : \text{Args} \rightarrow \{\text{in, out, undec}\}$ be a total function. We say that \mathcal{L} is a complete labelling iff:

$$\forall A \in \text{Args} : \mathcal{L}(A) = \text{out} \iff \exists B \in \text{Args} : ((B, A) \in \text{Att} \land \mathcal{L}(B) = \text{in}),$$

and

$$\forall A \in \text{Args} : \mathcal{L}(A) = \text{in} \iff \forall B \in \text{Args} : ((B, A) \in \text{Att} \supset \mathcal{L}(B) = \text{out}).$$

Complete extension: $\{A, C\}$
What are the complete extensions?

A $\xrightarrow{\text{}}$ B

Complete extensions: \{A\}, \{B\}, \emptyset
What are the complete extensions?

Complete extensions: \{A\}
What are the complete extensions?

Complete extensions: \{A\}, \{B\}
What are the complete extensions?

Complete extensions: \(\{A\}, \{B\}, \emptyset \)
What are the complete extensions?

Complete extensions:

- \{A, C\}
- \{B, D\}
- ∅
What are the complete extensions?

Complete extensions: \{A, C\}
What are the complete extensions?

Complete extensions: \(\{A, C\}, \{B, D\}\)
What are the complete extensions?

Complete extensions: \(\{A, C\}, \{B, D\}, \emptyset \)
Preferred and grounded extensions

A preferred extension of an argumentation framework AF is a maximal (w.r.t. set inclusion) admissible set of AF. From the labelling perspective, preferred extensions coincide with those labellings in which in is maximal and out is maximal (and undec is minimal).

The grounded extension of an argumentation framework AF is a minimal (w.r.t. set inclusion) admissible set of AF. From the labelling perspective, the grounded extension coincides with those labellings in which in is minimal and out is minimal (and undec is maximal).
Preferred and grounded extensions

A preferred extension of an argumentation framework AF is a maximal (w.r.t. set inclusion) admissible set of AF.

From the labelling perspective, preferred extensions coincide with those labellings in which in is maximal and out is maximal (and undec is minimal).
A preferred extension of an argumentation framework AF is a maximal (w.r.t. set inclusion) admissible set of AF.

From the labelling perspective, preferred extensions coincide with those labellings in which in is maximal and out is maximal (and undec is minimal).

The grounded extension of an argumentation framework AF is a minimal (w.r.t. set inclusion) admissible set of AF.
A preferred extension of an argumentation framework AF is a maximal (w.r.t. set inclusion) admissible set of AF.

From the labelling perspective, preferred extensions coincide with those labellings in which in is maximal and out is maximal (and undec is minimal).

The grounded extension of an argumentation framework AF is a minimal (w.r.t. set inclusion) admissible set of AF.

From the labelling perspective, the grounded extension coincides with those labellings in which in is minimal and out is minimal (and undec is maximal).
Floating conclusions again

What are the complete extensions?

$$\{A, D\}, \{B, D\}, \emptyset$$

Preferred extensions?

$$\{A, D\}, \{B, D\}$$

Grounded extension?

$$\emptyset$$

Credulous approach:

$$\text{AF} | \neg A \iff A \text{ is in some preferred extension}$$

Skeptical approach:

$$\text{AF} | \neg A \iff A \text{ is in all preferred extensions}$$
Floating conclusions again

What are the complete extensions?

\{A, D\}
Floating conclusions again

What are the complete extensions?

\{A, D\}, \{B, D\}
Floating conclusions again

What are the complete extensions?

\{A, D\}, \{B, D\}, \emptyset
Floating conclusions again

What are the complete extensions?

\{A, D\}, \{B, D\}, \emptyset

Preferred extensions?
Floating conclusions again

What are the complete extensions?

\{A, D\}, \{B, D\}, \emptyset

Preferred extensions? \{A, D\}, \{B, D\}
Floating conclusions again

What are the complete extensions?

\{A, D\}, \{B, D\}, \emptyset

Preferred extensions? \{A, D\}, \{B, D\}

Grounded extension?
Floating conclusions again

What are the complete extensions?

\{A, D\}, \{B, D\}, \emptyset

Preferred extensions? \{A, D\}, \{B, D\}

Grounded extension? \emptyset

Credulous approach: $AF \models A$ iff A is in some preferred extension
Floating conclusions again

What are the complete extensions?

\{A, D\}, \{B, D\}, \emptyset

Preferred extensions? \{A, D\}, \{B, D\}

Grounded extension? \emptyset

Credulous approach: \(AF \models A\) iff \(A\) is in some preferred extension

Skeptical approach: \(AF \models A\) iff \(A\) is in all preferred extensions
A conflict-free set of arguments S is a **stable extension** iff S attacks each argument which does not belong to S.

What are the stable extensions of the following AF?

Technically not so well-behaved: the existence of a stable extension is not guaranteed.
Stable semantics

A conflict-free set of arguments S is a stable extension iff S attacks each argument which does not belong to S.

≈ Good position to be in (informally)
A conflict-free set of arguments \(S \) is a stable extension iff \(S \) attacks each argument which does not belong to \(S \).

≈ Good position to be in (informally)

▶ No arguments are labelled undec
Stable semantics

A conflict-free set of arguments S is a stable extension iff S attacks each argument which does not belong to S.

≈ Good position to be in (informally)

- No arguments are labelled undec

What are the stable extensions of the following AF?

![Diagram of arguments A, B, and C with arrows indicating relationships.]
Stable semantics

A conflict-free set of arguments S is a stable extension iff S attacks each argument which does not belong to S.

≈ Good position to be in (informally)

▶ No arguments are labelled undec

What are the stable extensions of the following AF?

Technically not so well-behaved: the existence of a stable extension is not guaranteed
Given an AF $\langle\text{Args,Att}\rangle$ with $S \subseteq \text{Args}$, let
$S^+ = \{B \mid (A, B) \in \text{Att} \text{ for some } A \in S\}$
Semi-stable semantics to the rescue?

Given an AF \(\langle \text{Args,Att} \rangle \) with \(S \subseteq \text{Args} \), let

\[
S^+ = \{ B \mid (A, B) \in \text{Att} \text{ for some } A \in S \}
\]

Let \(\langle \text{Args,Att} \rangle \) be an AF, and \(S \subseteq \text{Args} \). \(S \) is a **semi-stable extension** iff \(S \) is a complete extension and \(S \cup S^+ \) is maximal.
Semi-stable semantics to the rescue?

Given an AF $\langle \text{Args}, \text{Att} \rangle$ with $S \subseteq \text{Args}$, let $S^+ = \{ B \mid (A, B) \in \text{Att} \text{ for some } A \in S \}$

Let $\langle \text{Args}, \text{Att} \rangle$ be an AF, and $S \subseteq \text{Args}$. S is a semi-stable extension iff S is a complete extension and $S \cup S^+$ is maximal.

▷ In semi-stable semantics the arguments labelled undec are minimized
Given an AF $\langle \text{Args}, \text{Att} \rangle$ with $S \subseteq \text{Args}$, let

$S^+ = \{ B \mid (A, B) \in \text{Att} \text{ for some } A \in S \}$

Let $\langle \text{Args}, \text{Att} \rangle$ be an AF, and $S \subseteq \text{Args}$. S is a semi-stable extension iff S is a complete extension and $S \cup S^+$ is maximal.

- In semi-stable semantics the arguments labelled undec are minimized
- What are the semi-stable extensions of the following AFs?
Given an AF $\langle \text{Args}, \text{Att} \rangle$ with $S \subseteq \text{Args}$, let

$S^+ = \{ B \mid (A, B) \in \text{Att} \text{ for some } A \in S \}$

Let $\langle \text{Args}, \text{Att} \rangle$ be an AF, and $S \subseteq \text{Args}$. S is a semi-stable extension iff S is a complete extension and $S \cup S^+$ is maximal.

- In semi-stable semantics the arguments labelled undec are minimized
- What are the semi-stable extensions of the following AFs?

\[\begin{array}{ccc}
A & \leftrightarrow & B \\
& \leftrightarrow & C
\end{array} \]
Semi-stable semantics to the rescue?

Given an AF $\langle \text{Args,Att} \rangle$ with $S \subseteq \text{Args}$, let $S^+ = \{ B \mid (A, B) \in \text{Att} \text{ for some } A \in S \}$

Let $\langle \text{Args,Att} \rangle$ be an AF, and $S \subseteq \text{Args}$. S is a semi-stable extension iff S is a complete extension and $S \cup S^+$ is maximal.

- In semi-stable semantics the arguments labelled undec are minimized
- What are the semi-stable extensions of the following AFs?

![Diagram of the two AFs]
Semi-stable semantics to the rescue?

Given an AF $\langle \text{Args}, \text{Att} \rangle$ with $S \subseteq \text{Args}$, let
$$S^+ = \{ B \mid (A, B) \in \text{Att} \text{ for some } A \in S \}$$

Let $\langle \text{Args}, \text{Att} \rangle$ be an AF, and $S \subseteq \text{Args}$. S is a semi-stable extension iff S is a complete extension and $S \cup S^+$ is maximal.

- In semi-stable semantics the arguments labelled undec are minimized
- What are the semi-stable extensions of the following AFs?

[Diagram of AFs: AF1 with A -> B -> C, AF2 with A -> C, C -> D]
Semi-stable semantics to the rescue?

Given an AF \(\langle \text{Args,Att} \rangle \) with \(S \subseteq \text{Args} \), let
\[
S^+ = \{ B \mid (A, B) \in \text{Att} \text{ for some } A \in S \}
\]

Let \(\langle \text{Args,Att} \rangle \) be an AF, and \(S \subseteq \text{Args} \). \(S \) is a semi-stable extension iff \(S \) is a complete extension and \(S \cup S^+ \) is maximal.

▶ In semi-stable semantics the arguments labelled undec are minimized

▶ What are the semi-stable extensions of the following AFs?

![Diagram of AFs]

Is \(\{B, D\} \) also a stable extension?
So do we always get a semi-stable extension?

First, note that there are infinitely many preferred extensions:

1. Each C_i is in, each B_i is out, and each A_i is undec.
2. C_1 is out, all other C_i are in; B_1 is in, all other B_i are out; A_1 is out, all A_j with $j > 1$ are undec.
3. C_2 is out, all other C_i are in; B_2 is in, all other B_i are out; A_1 and A_2 are out, all A_j with $j > 2$ are undec.

... At most one of the B_i can be labelled in. Why?
So do we always get a semi-stable extension?

First, note that there are infinitely many preferred extensions:

1. Each C_i is in, each B_i is out, and each A_i is undec.

2. C_1 is out, all other C_i are in; B_1 is in, all other B_i are out; A_1 is out, all A_j with $j > 1$ are undec.

3. C_2 is out, all other C_i are in; B_2 is in, all other B_i are out; A_1 and A_2 are out, all A_j with $j > 2$ are undec.

... ... At most one of the B_i can be labelled in. Why?
So do we always get a semi-stable extension?

First, note that there are infinitely many preferred extensions:
So do we always get a semi-stable extension?

First, note that there are infinitely many preferred extensions:

1. Each C_i is in, each B_i is out, and each A_i is undec
So do we always get a semi-stable extension?

First, note that there are infinitely many preferred extensions:

1. Each C_i is in, each B_i is out, and each A_j is undec

2. C_1 is out, all other C_i are in; B_1 is in, all other B_i are out; A_1 is out, all A_j with $j > 1$ are undec.

3. C_2 is out, all other C_i are in; B_2 is in, all other B_i are out; A_1 and A_2 are out, all A_j with $j > 2$ are undec.
So do we always get a semi-stable extension?

First, note that there are infinitely many preferred extensions:

1. Each C_i is in, each B_i is out, and each A_j is undec
2. C_1 is out, all other C_i are in; B_1 is in, all other B_i are out; A_1 is out, all A_j with $j > 1$ are undec.
3. C_2 is out, all other C_i are in; B_2 is in, all other B_i are out; A_1 and A_2 are out, all A_j with $j > 2$ are undec.
So do we always get a semi-stable extension?

First, note that there are infinitely many preferred extensions:

1. Each C_i is in, each B_i is out, and each A_i is undec
2. C_1 is out, all other C_i are in; B_1 is in, all other B_i are out; A_1 is out, all A_j with $j > 1$ are undec.
3. C_2 is out, all other C_i are in; B_2 is in, all other B_i are out; A_1 and A_2 are out, all A_j with $j > 2$ are undec.

::
So do we always get a semi-stable extension?

First, note that there are infinitely many preferred extensions:

1. Each C_i is in, each B_i is out, and each A_i is undec
2. C_1 is out, all other C_i are in;
 B_1 is in, all other B_i are out;
 A_1 is out, all A_j with $j > 1$ are undec.
3. C_2 is out, all other C_i are in;
 B_2 is in, all other B_i are out;
 A_1 and A_2 are out, all A_j with $j > 2$ are undec.

At most one of the B_i can be labelled in. Why?
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)

The larger the i in B_i, the less arguments are undec. Ad infinitum.

There is no semi-stable extension.

Each finite AF has at least one semi-stable extension (Caminada, Verheij).
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)
Assume B_i is in. Then C_i is out.

\[
\begin{array}{c}
A_1 \rightarrow B_1 \rightarrow C_1 \\
A_2 \rightarrow B_2 \rightarrow C_2 \\
A_3 \rightarrow B_3 \rightarrow C_3 \\
\vdots & \vdots & \vdots
\end{array}
\]

▶ The larger the i in B_i, the less arguments are undec. Ad infinitum.

There is no semi-stable extension.

, Each finite AF has at least one semi-stable extension (Caminada, Verheij).
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)

Assume B_i is in. Then C_i is out.

For all $j \neq i$: B_j is out and C_j is in.

▶

The larger the i in B_i, the less arguments are undec. Ad infinitum.

/ There is no semi-stable extension.

, Each finite AF has at least one semi-stable extension (Caminada, Verheij).
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)

Assume B_i is in. Then C_i is out.

For all $j \neq i$: B_j is out and C_j is in.

All A_k with $k \leq i$ are out.

All A_k with $k > i$ are undec.

▶

There is no semi-stable extension.

Each finite AF has at least one semi-stable extension (Caminada, Verheij).
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)
Assume B_i is in. Then C_i is out.
For all $j \neq i$: B_j is out and C_j is in.
All A_k with $k \leq i$ are out.
All A_k with $k > i$ are undec.

For instance:
If B_1 is in, then:
- B_2, B_3, \ldots are out

The larger the i in B_i, the less arguments are undec. Ad infinitum.

There is no semi-stable extension.
Each finite AF has at least one semi-stable extension (Caminada, Verheij).
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)
Assume \(B_i \) is in. Then \(C_i \) is out.
For all \(j \neq i \): \(B_j \) is out and \(C_j \) is in.
All \(A_k \) with \(k \leq i \) are out.
All \(A_k \) with \(k > i \) are undec.

For instance:
If \(B_1 \) is in, then:
- \(B_2, B_3, \ldots \) are out
- \(C_1 \) is out; \(C_2, C_3, \ldots \) are in
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)

Assume B_i is in. Then C_i is out.
For all $j \neq i$: B_j is out and C_j is in.
All A_k with $k \leq i$ are out.
All A_k with $k > i$ are undec.

For instance:
If B_1 is in, then:
- B_2, B_3, \ldots are out
- C_1 is out; C_2, C_3, \ldots are in
- A_1 is out; A_2, A_3, \ldots are undec
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)

Assume B_i is in. Then C_i is out.
- For all $j \neq i$: B_j is out and C_j is in.
- All A_k with $k \leq i$ are out.
- All A_k with $k > i$ are undec.

For instance:
- If B_1 is in, then:
 - B_2, B_3, \ldots are out
 - C_1 is out; C_2, C_3, \ldots are in
 - A_1 is out; A_2, A_3, \ldots are undec

- If B_2 is in, then:
 - B_1, B_3, B_4, \ldots are out
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)

Assume B_i is in. Then C_i is out.
 For all $j \neq i$: B_j is out and C_j is in.
All A_k with $k \leq i$ are out.
All A_k with $k > i$ are undec.

For instance:
If B_1 is in, then:
- B_2, B_3, \ldots are out
 - C_1 is out; C_2, C_3, \ldots are in
 - A_1 is out; A_2, A_3, \ldots are undec

If B_2 is in, then:
- B_1, B_3, B_4, \ldots are out
- C_2 is out; C_1, C_3, C_4, \ldots are in

▶ The larger the i in B_i, the less arguments are undec. Ad infinitum.

There is no semi-stable extension.

, Each finite AF has at least one semi-stable extension (Caminada, Verheij).
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)

Assume B_i is in. Then C_i is out.

For all $j \neq i$: B_j is out and C_j is in.
All A_k with $k \leq i$ are out.
All A_k with $k > i$ are undec.

For instance:
If B_1 is in, then:
- B_2, B_3, \ldots are out
- C_1 is out; C_2, C_3, \ldots are in
- A_1 is out; A_2, A_3, \ldots are undec

If B_2 is in, then:
- B_1, B_3, B_4, \ldots are out
- C_2 is out; C_1, C_3, C_4, \ldots are in
- A_1, A_2 are out; A_3, A_4, \ldots are undec
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)

Assume B_i is in. Then C_i is out.
 For all $j \neq i$: B_j is out and C_j is in.
All A_k with $k \leq i$ are out.
All A_k with $k > i$ are undec.

For instance:
If B_1 is in, then:
- B_2, B_3, \ldots are out
 - C_1 is out; C_2, C_3, \ldots are in
 - A_1 is out; A_2, A_3, \ldots are undec

If B_2 is in, then:
- B_1, B_3, B_4, \ldots are out
- C_2 is out; C_1, C_3, C_4, \ldots are in
- A_1, A_2 are out; A_3, A_4, \ldots are undec

► The larger the i in B_i, the less arguments are undec. Ad infinitum.
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)
Assume B_i is in. Then C_i is out.
For all $j \neq i$: B_j is out and C_j is in.
All A_k with $k \leq i$ are out.
All A_k with $k > i$ are undec.

For instance:
If B_1 is in, then:
- B_2, B_3, \ldots are out
 - C_1 is out; C_2, C_3, \ldots are in
 - A_1 is out; A_2, A_3, \ldots are undec

If B_2 is in, then:
- B_1, B_3, B_4, \ldots are out
- C_2 is out; C_1, C_3, C_4, \ldots are in
- A_1, A_2 are out; A_3, A_4, \ldots are undec

▶ The larger the i in B_i, the less arguments are undec. Ad infinitum.

☹ There is no semi-stable extension.
So do we always get a semi-stable extension? (2)

(Remember: we want to minimize undec)

Assume B_i is in. Then C_i is out.
For all $j \neq i$: B_j is out and C_j is in.
All A_k with $k \leq i$ are out.
All A_k with $k > i$ are undec.

For instance:
If B_1 is in, then:
- B_2, B_3, \ldots are out
- C_1 is out; C_2, C_3, \ldots are in
- A_1 is out; A_2, A_3, \ldots are undec

If B_2 is in, then:
- B_1, B_3, B_4, \ldots are out
- C_2 is out; C_1, C_3, C_4, \ldots are in
- A_1, A_2 are out; A_3, A_4, \ldots are undec

- The larger the i in B_i, the less arguments are undec. Ad infinitum.
- There is no semi-stable extension.
- Each finite AF has at least one semi-stable extension (Caminada, Verheij).
Extension properties

▶ There is always a preferred extension
Extension properties

- There is always a preferred extension
- There is always a unique grounded extension
Extension properties

- There is always a preferred extension
- There is always a unique grounded extension
- Each preferred extension is complete, but not vice versa
Extension properties

- There is always a preferred extension
- There is always a unique grounded extension
- Each preferred extension is complete, but not vice versa
- Every stable extension is a preferred extension, but not vice versa

An argumentation framework is well-founded iff there exists no infinite sequence A_0, A_1, A_2, \ldots such that for each A_i, A_{i+1} attacks A_i.

- Every well-founded AF has exactly one complete extension which is grounded, preferred, and stable
- Every stable extension is a semi-stable extension
Extension properties

- There is always a preferred extension
- There is always a unique grounded extension
- Each preferred extension is complete, but not vice versa
- Every stable extension is a preferred extension, but not vice versa

An argumentation framework is **well-founded** iff there exists no infinite sequence A_0, A_1, A_2, \ldots such that for each A_i, A_{i+1} attacks A_i.
Extension properties

- There is always a preferred extension
- There is always a unique grounded extension
- Each preferred extension is complete, but not vice versa
- Every stable extension is a preferred extension, but not vice versa

An argumentation framework is well-founded iff there exists no infinite sequence A_0, A_1, A_2, \ldots such that for each A_i, A_{i+1} attacks A_i.

- Every well-founded AF has exactly one complete extension which is grounded, preferred, and stable
Extension properties

- There is always a preferred extension
- There is always a unique grounded extension
- Each preferred extension is complete, but not vice versa
- Every stable extension is a preferred extension, but not vice versa

An argumentation framework is well-founded iff there exists no infinite sequence A_0, A_1, A_2, \ldots such that for each A_i, A_{i+1} attacks A_i.

- Every well-founded AF has exactly one complete extension which is grounded, preferred, and stable
- Every stable extension is a semi-stable extension
Extensions: overview

stable extension

semi-stable extension

preferred extension

grounded extension

complete extension
Construction of the grounded extension

The grounded extension G relative to an AF (A, Att) is defined as follows (where A is countable):

(i) G_0: the set of all arguments in A without attackers;
(ii) G_{i+1}: all arguments defended by G_i;
(iii) $G = \bigcup_{i \geq 0} G_i$
Construction of the grounded extension

The grounded extension G relative to an AF (A, Att) is defined as follows (where A is countable):

(i) G_0: the set of all arguments in A without attackers;
(ii) G_{i+1}: all arguments defended by G_i;
(iii) $G = \bigcup_{i \geq 0} G_i$

All arguments that have no attacker are accepted (in)

Arguments attacked by included arguments are excluded (out) and so on . . .
Construction of the grounded extension

The grounded extension G relative to an AF (A, Att) is defined as follows (where A is countable):

(i) G_0: the set of all arguments in A without attackers;
(ii) G_{i+1}: all arguments defended by G_i;
(iii) $G = \bigcup_{i \geq 0} G_i$

All arguments that have no attacker are accepted (in)
Arguments attacked by included arguments are excluded (out)
Construction of the grounded extension

The grounded extension \mathcal{G} relative to an AF $(\mathcal{A}, \text{Att})$ is defined as follows (where \mathcal{A} is countable):

(i) \mathcal{G}_0: the set of all arguments in \mathcal{A} without attackers;
(ii) \mathcal{G}_{i+1}: all arguments defended by \mathcal{G}_i;
(iii) $\mathcal{G} = \bigcup_{i \geq 0} \mathcal{G}_i$

All arguments that have no attacker are accepted (in)
Arguments attacked by included arguments are excluded (out)
and so on . . .
Construction of the grounded extension

The grounded extension \(G \) relative to an AF \((A, \text{Att})\) is defined as follows (where \(A \) is countable):

(i) \(G_0 \): the set of all arguments in \(A \) without attackers;
(ii) \(G_{i+1} \): all arguments defended by \(G_i \);
(iii) \(G = \bigcup_{i \geq 0} G_i \)

All arguments that have no attacker are accepted \((\text{in})\).
Arguments attacked by included arguments are excluded \((\text{out})\) and so on . . .
Construction of the grounded extension

The grounded extension \mathcal{G} relative to an AF $(\mathcal{A}, \text{Att})$ is defined as follows (where \mathcal{A} is countable):

(i) \mathcal{G}_0: the set of all arguments in \mathcal{A} without attackers;
(ii) \mathcal{G}_{i+1}: all arguments defended by \mathcal{G}_i;
(iii) $\mathcal{G} = \bigcup_{i \geq 0} \mathcal{G}_i$

All arguments that have no attacker are accepted (in)
Arguments attacked by included arguments are excluded (out)
and so on . . .
Further matters

(i) More procedures?
Further matters

(i) More procedures?

► Caminada/Prakken/Sartor/Vreeswijk: argument games for computing admissible sets and preferred extensions
Further matters

(i) More procedures?
 ▶ Caminada/Prakken/Sartor/Vreeswijk: argument games for computing admissible sets and preferred extensions

(ii) More semantics?
 ▶ Ideal extension (Dung, Mancarella, Toni): the largest admissible set (w.r.t. set-inclusion) that is a subset of every preferred extension ≈ unique extension semantics which is less skeptical than the grounded semantics
 ▶ Non-admissibility based semantics: obtained extensions need not be admissible ↔ grounded, preferred, (semi-)stable, ideal extensions
 ▶ Can we call a non-admissible argument justified?
 ▶ Ranking-based semantics (Amgoud, Ben-Naim)
 - Extract an order on arguments (from acceptable to weak)
 - Attacks weaken, but do not kill their targets
 - Number of attacks impacts arguments' acceptability

(iii) Representing the internal (logical) structure of arguments???
Further matters

(i) More procedures?
 ▶ Caminada/Prakken/Sartor/Vreeswijk: argument games for computing admissible sets and preferred extensions

(ii) More semantics?
 ▶ Ideal extension (Dung, Mancarella, Toni): the largest admissible set (w.r.t. set-inclusion) that is a subset of every preferred extension
Further matters

(i) More procedures?
 ► Caminada/Prakken/Sartor/Vreeswijk: argument games for computing admissible sets and preferred extensions

(ii) More semantics?
 ► Ideal extension (Dung, Mancarella, Toni): the largest admissible set (w.r.t. set-inclusion) that is a subset of every preferred extension ≈ unique extension semantics which is less skeptical than the grounded semantics
 ► Non-admissibility based semantics: obtained extensions need not be admissible
 ↔ grounded, preferred, (semi-)stable, ideal extensions
Further matters

(i) More procedures?
 ▶ Caminada/Prakken/Sartor/Vreeswijk: argument games for computing admissible sets and preferred extensions

(ii) More semantics?
 ▶ Ideal extension (Dung, Mancarella, Toni): the largest admissible set (w.r.t. set-inclusion) that is a subset of every preferred extension
 \(\approx\) unique extension semantics which is less skeptical than the grounded semantics
 ▶ Non-admissibility based semantics: obtained extensions need not be admissible
 \(\leftrightarrow\) grounded, preferred, (semi-)stable, ideal extensions
 ? Can we call a non-admissible argument justified?

Ranking-based semantics (Amgoud, Ben-Naim)
- Extract an order on arguments (from acceptable to weak)
- Attacks weaken, but do not kill their targets
- Number of attacks impacts arguments' acceptability
Further matters

(i) More procedures?
 ▶ Caminada/Prakken/Sartor/Vreeswijk: argument games for computing admissible sets and preferred extensions

(ii) More semantics?
 ▶ Ideal extension (Dung, Mancarella, Toni): the largest admissible set (w.r.t. set-inclusion) that is a subset of every preferred extension ≈ unique extension semantics which is less skeptical than the grounded semantics
 ▶ Non-admissibility based semantics: obtained extensions need not be admissible
 ↔ grounded, preferred, (semi-)stable, ideal extensions
 ? Can we call a non-admissible argument justified?
 ▶ Ranking-based semantics (Amgoud, Ben-Naim)
Further matters

(i) More procedures?

▶ Caminada/Prakken/Sartor/Vreeswijk: argument games for computing admissible sets and preferred extensions

(ii) More semantics?

▶ Ideal extension (Dung, Mancarella, Toni): the largest admissible set (w.r.t. set-inclusion) that is a subset of every preferred extension \(\approx \) unique extension semantics which is less skeptical than the grounded semantics

▶ Non-admissibility based semantics: obtained extensions need not be admissible

\(\leftrightarrow \) grounded, preferred, (semi-)stable, ideal extensions

? Can we call a non-admissible argument justified?

▶ Ranking-based semantics (Amgoud, Ben-Naim)

- Extract an order on arguments (from acceptable to weak)
Further matters

(i) More procedures?
 ▶ Caminada/Prakken/Sartor/Vreeswijk: argument games for computing admissible sets and preferred extensions

(ii) More semantics?
 ▶ Ideal extension (Dung, Mancarella, Toni): the largest admissible set (w.r.t. set-inclusion) that is a subset of every preferred extension ≈ unique extension semantics which is less skeptical than the grounded semantics
 ▶ Non-admissibility based semantics: obtained extensions need not be admissible
 ↔ grounded, preferred, (semi-)stable, ideal extensions
 ? Can we call a non-admissible argument justified?
 ▶ Ranking-based semantics (Amgoud, Ben-Naim)
 - Extract an order on arguments (from acceptable to weak)
 - Attacks weaken, but do not kill their targets
Further matters

(i) More procedures?

▶ Caminada/Prakken/Sartor/Vreeswijk: argument games for computing admissible sets and preferred extensions

(ii) More semantics?

▶ Ideal extension (Dung, Mancarella, Toni): the largest admissible set (w.r.t. set-inclusion) that is a subset of every preferred extension ≈ unique extension semantics which is less skeptical than the grounded semantics

▶ Non-admissibility based semantics: obtained extensions need not be admissible

leftrightarrow grounded, preferred, (semi-)stable, ideal extensions

? Can we call a non-admissible argument justified?

▶ Ranking-based semantics (Amgoud, Ben-Naim)

- Extract an order on arguments (from acceptable to weak)
- Attacks weaken, but do not kill their targets
- Number of attacks impacts arguments’ acceptability
Further matters

(i) More procedures?
 ► Caminada/Prakken/Sartor/Vreeswijk: argument games for computing admissible sets and preferred extensions

(ii) More semantics?
 ► Ideal extension (Dung, Mancarella, Toni): the largest admissible set (w.r.t. set-inclusion) that is a subset of every preferred extension \(\approx \) unique extension semantics which is less skeptical than the grounded semantics
 ► Non-admissibility based semantics: obtained extensions need not be admissible
 \(\leftrightarrow \) grounded, preferred, (semi-)stable, ideal extensions
 ? Can we call a non-admissible argument justified?
 ► Ranking-based semantics (Amgoud, Ben-Naim)
 - Extract an order on arguments (from acceptable to weak)
 - Attacks weaken, but do not kill their targets
 - Number of attacks impacts arguments’ acceptability

(iii) Representing the internal (logical) structure of arguments???